

山西兰花科技创业股份有限公司 化工分公司

企业信息公开资料

审批:_	
审核:_	
编制.	环 保 科

二O二O年七月

目 录

一、基础信息	1
二、排污信息	
三、污染防治设施建设和运行情况	
四、建设项目环境影响评价及其他环境保护行政许可情况	
五、突发环境事件应急预案	
六、其他应当公开的环境信息	
附件一: 营业执照	5
附件二:排放口数量及分布情况示意图	6
附件三:排污许可证	7
附件四: 监测报告	9
附件五:废水、烟气在线监测数据	43
附件六:建设项目环境影响评价批复文件	66
附件七:建设项目验收批复文件	69
附件八:《突发环境事件应急预案》备案登记表	71
附件九: 化工分公司 2020 年自行监测方案	72

一、基础信息

单位名称	山西兰花科技创业股份有限公司化工分公司
统一社会信用代码	91140500111200136Q
法定代表人	李晓明
生产地址	山西省晋城市泽州县巴公工业园区
联系方式	0356-3892251
生产经营和管理服务主要内容	液氨、甲醇、尿素制造
产品	尿素、工业甲醇
规模	8 万吨/年合成氨、13 万吨/年尿素

二、排污信息

		废气污染物:颗粒物、SO ₂ 、氮氧化物					
污染物名	名称		废水污染物: 氨氮、COD、SS、PH、氰化物、挥发酚、石油类、硫化物、 总磷、总氮、氟化物				
排放方	式		连续性排放				
排放口對	数量		废气排放口 6 个: 55T/h 三废炉烟囱 1 个、35T/h 锅炉烟囱 1 个、煤场、 尿素放空管、造粒塔、甲醇 VOC _s 回收治理装置排气筒				
及分布		废水排放口1个:总排口					
排放	55T/h ∃	三废炉、35T/h 锅 炉	市监控中心提供数据附后				
浓度		废水	季度委托监测浓度附后				
			颗粒物: 20.447 吨				
排放总量		废气	SO ₂ : 2.74 吨				
			氮氧化物: 82.366 吨				

-	排放总量		-l.	COD: 0.714 吨			
排放			水		氨氮:(0.034 吨	
	超标排	放情况			无		
			颗粒物: 30	Omg/m ³		颗粒物: 30mg/m ³	
		三废炉执行 3271-2014	SO ₂ : 2001	mg/m ³	35T/h 锅炉执行 GB13271-2014	SO ₂ : 200mg/m ³	
			氮氧化物:20	00mg/m ³		氮氧化物: 200 mg/m ³	
	尿	素放空管	氨≤35	kg/h	煤场	颗粒物≤120mg/m³	
		造粒塔	颗粒物≤12	20mg/m ³	甲醇	甲醇≤50mg/m³	
执		(日本) · · · · · · · · · · · · · · · · · · ·	氨≤75kg/h		备注		
行标			PH: 6-9			COD: 80mg/L	
准			氨氮: 25mg/L			悬浮物: 50mg/L	
		、排放执行 3458-2013	总氮: 35mg/L			总磷: 0.5mg/L	
			氰化物: 0.2 mg/L			挥发酚: 0.1mg/L	
			硫化物: 0.5mg/L			石油类: 3 mg/L	
	氟化物执行《地表		水环境质量标准》(GB3838-2002)表 1 中Ⅲ地表水标准限值			氟化物: 1.0mg/L	
			烟尘: 76.967 吨/年				
	核定排放 总量	SO ₂ : 89.24 吨/年					
				— 交	〔氧化物: 173.116	吨/年	
					COD: 12 吨/年	Ē	
					氨氮: 3.6 吨/年	Ē	

三、污染防治设施建设和运行情况

类型	序号	产生源	污染物 名称	处理设施 名称	处理工艺	处理能力	设施数量	建设位置	建设时间	运行 情况
				电袋除尘	电袋除尘	290000m³/h	1	55t/h 三废炉	2019. 7	运行 正常
	1	55t/h 三废炉	锅炉 烟气	炉内烟气 脱硝装置	SNCR+SCR +低氮燃 烧	290000m³/h	1	55t/h 三废炉	2019. 7	运行 正常
				炉外烟气 脱硫装置	氨法脱硫	290000m³/h	1	55t/h 三废炉	2019. 7	运行 正常
		35t/h		电除尘	静电除尘	117242m³/h	1	35 吨 锅炉	2004. 8	运行 正常
	2	循环流 化床锅	锅炉 烟气	炉内烟气 脱硝装置	氨水脱硝	117242m³/h	1	35 吨 锅炉	2015. 12	运行 正常
废气		炉		炉外烟气 脱硫装置	氨法脱硫	117242m³/h	1	35 吨 锅炉	2012. 12	运行 正常
	3	合成放 空气	氨气	氢回收装 置	物理处理 法	2000Nm³/h	1	合成车 间	2004. 8	运行 正常
	4	合成驰 放气	氨气	等压回收	化学处理 法	2000Nm³/h	1	合成车 间	2004. 8	运行 正常
	5	5 粒塔 尾	造粒塔 尾气	粉尘回收 装置	三段吸收 分离工艺	220000m³/h	1	尿素造 粒塔	2014.8	运行 正常
	6		煤尘	煤场布袋 除尘器	布袋除尘	12166m³/h	1	煤场	2004. 8	运行 正常
	7	甲醇精 馏、储存 及充装 系统	甲醇	甲醇 VOCs 回收治理 装置	水洗涤+ 活性炭吸 附	6000m³/h	1	甲醇储 存区	2018. 5	运行 正常
	1	造气循 环水	悬浮物	微涡流塔 板澄清器	物理处理 法	48000 吨/ 日	1	脱硫车间	2004. 8	运行 正常
废水	2	尿素工 段	尿素工 艺废水	深度水解	物理化学 处理法	480 吨/日	1	尿素工 段	2004. 8	运行 正常
	3	总排废 水	总排废 水	含氟废水 处置装置	离子树脂 吸附法	1200 吨/日	1	脱硫工段	2018. 9	运行 正常
		鼓引风 机、压缩环 机、液体 输送等	噪声	对操作人员 的防护器材 放空管、尿 炉鼓风机装	,在造气风 素 CO ₂ 压缩标 设消音器,不	,加隔音室; 近并配置必要 机、造气空气 机放空管、锅 生新旧压缩厂 泵房设隔音间	21	各岗位	2004	运行 正常

四、建设项目环境影响评价及其他环境保护行政许可情况

名称	审批时间	批复文号	审批单位
13 万吨/年尿素技术 改造工程环境影响评 价报告书	2004年6月22日	晋环函【2004】249 号	山西省环境 保护局
13 万吨/年尿素技术 改造工程验收批复	2008年4月7日	环验【2008】20号	山西省环境 保护局
55T 三废炉环评批复	2018年10月8日	晋市环审【2018】39号	晋城市环境 保护局

五、突发环境事件应急预案

附突发环境事件应急预案备案登记表。

六、其他应当公开的环境信息

附化工分公司 2020 年自行监测方案。

附件一: 营业执照

统一社会信用代码 911405001112001360

营业执照

J

FOR MEAN OF STREET, ST. THEORY.

2

称 山西兰花科技创业股份有限公司化工分公司

米

型其他有限责任公司分公司

负

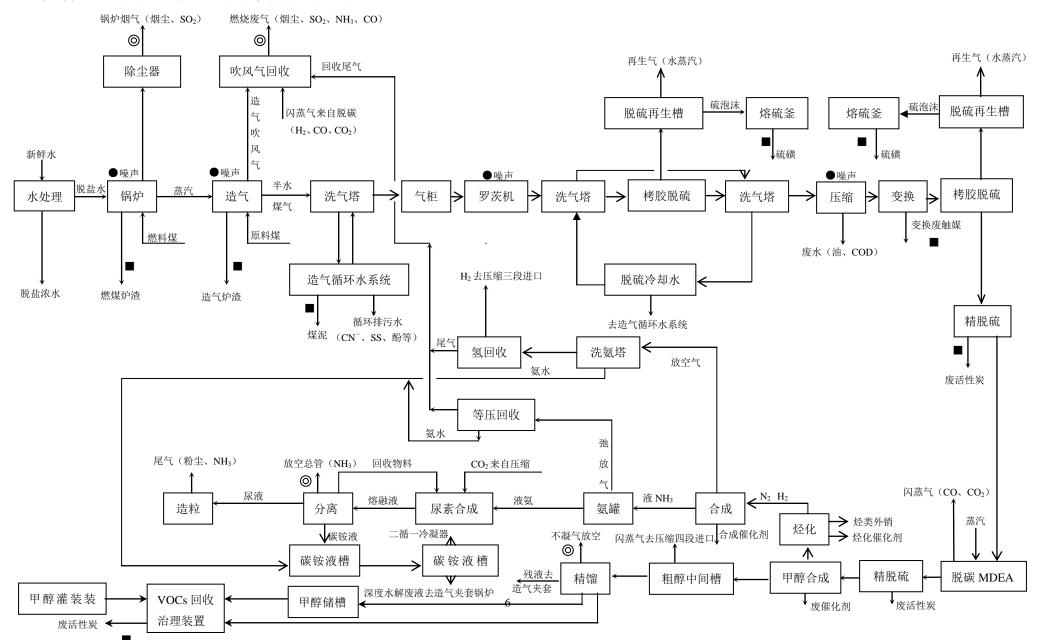
责

人秦成龙

经营范

液氨、甲醇、硫磺、杂戊醇、煤气、尿素、农用碳酸氢铵生产(按许可证核定范围和期限经营)***(依法须经批准的项目,经相关部门 批准后方可开展经营活动) 成立日期1999年01月04日

营业期限/长期


营业场 所 山西省泽州县巴公镇

登记机关

2019

月11月19

附件二: 排放口数量及分布情况示意图

证书编号: 911405001112001360001P

单位名称: 山西兰花科技创业股份有限公司化工分公司

注册地址: 山西省泽州县巴公镇

法定代表人: 李晓明

生产经营场所地址: 山西省晋城市泽州县巴公镇工业园区

行业类别: 氮肥制造

统一社会信用代码: 911405001112001360

有效期限: 自 2017年 12月 19日至 2020年 12月 18日止

发证机关:(盖章)晋城市行政审批服务管理局

发证日期: 2017年12月19日

报告编号:高创环检-S-[2019]032-1号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	废水
报	告	日	期:	2019年3月10日

报告编号: 高创环检-S-[2019]032-1号

第2页 共4页

监测结果一览表

样品信息	样品类别		废 水 污染		染源名称	废水	
	采札	羊频次 -	一天三次,共	一天 须	点位置	总排口	
			监测结果				
监测项目	单位	SF20190306 001	SF20190306 002	SF20190306 003	平均值	标准值	单项 判定
水温	°C	12	13	12			2-2
流量	m³/s	0.002	0.002	0.002			
pН	无量 纲	6.44	6.63	6.57		6~9	达标
化学需氧 量	mg/L	19	19	19	19	80	达标
氨氮	mg/L	1.12	1.07	1.09	1.09	25	达标
总氮	mg/L	3.30	3.25	3.33	3.29	35	达标
总磷	mg/L	0.08	0.11	0.08	0.09	0.5	达标
悬浮物	mg/L	4	6	7	6	50	达标
硫化物	mg/L	0.013	0.013	0.009	0.012	0.5	达标
氰化物	mg/L	ND (0.004L)	ND (0.004L)	ND (0.004L)	ND (0.004L)	0.2	达标
挥发酚	mg/L	0.0005	0.0008	0.0006	0.0006	0.1	达标
石油类	mg/L	0.08	0.07	0.06	0.07	3	达标

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	
报	告	E	期:	2019 年 6 月 24 日

报告编号: 高创环检-S-[2019]082-1号

第2页 共4页

监测结果一览表

样品	样品	品类别	废水		污茅	^{快源名称}	废	水
信息	采木	羊频次	一天三次,共	一天	测	点位置	总排	‡□
		,	监测	结果	4	2		单项
监测项目	单位	SF20190617 004	SF20190617 005		90617 06	平均值	标准值	判定
水温	°C	21	21	2	.1			
流量	m³/s		0.6	×10 ⁻³				<u>Part time</u>
рН	无量 纲	7.65	7.73	7.	58	:2 	6~9	达标
化学需氧 量	mg/L	22	20	2	22	21	80	达标
总氮	mg/L	4.45	4.37	4.	41	4.41	35	达标
总磷	mg/L	0.15	0.15	0.	14	0.15	0.5	达标
氨氮	mg/L	0.667	0.720	0.7	720	0.702	25	达标
悬浮物	mg/L	4	4		3	4	50	达标
硫化物	mg/L	0.019	0.024	0.0	019	0.020	0.5	达标
氰化物	mg/L	ND (0.004)	ND (0.004)		ID 004)	ND (0.004)	0.2	达标
挥发酚	mg/L	0.0028	0.0032	0.0	029	0.0029	0.1	达标

报告编号: 高创环检-S-[2019]139-1 号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	
报	告	日	期:	2019年9月17日

报告编号:高创环检-S-[2019]139-1号

第2页 共3页

监测结果一览表

			**********	**************************************		
样品	样品	品类别	废水	污染	源名称	废水
信息	采杉	羊頻次 -	-天三次,共一天	三 测点	位置	总排口
			监测	结果		1- A- A-
监测项目	单位	SF201909100 01	SF201909100 02	SF201909100 03	平均值	标准值
水温	°C	27	27	27	0 - Marie	
流量	m³/s	0.006	0.007	0.007		
рН	无量 纲	7.49	7.56	7.51		6~9
总氮	mg/L	8.78	8.64	8.85	8.75	35
总磷	mg/L	0.44	0.42	0.44	0.43	0.5
悬浮物	mg/L	3	3	4	3	50
硫化物	mg/L	0.049	0.044	0.044	0.045	0.5
氰化物	mg/L	ND (0.004)	ND (0.004)	ND (0.004)	ND (0.004)	0.2
挥发酚	mg/L	0.0016	0.0021	0.0018	0.0018	0.1
氨氮	mg/L	0.107	0.113	0.101	0.107	25
化学需氧 量	mg/L	4	4	4	4	80

报告编号:高创环检-S-[2019]210号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	废 水
报	告	E	期:	2019年12月22日

报告编号: 高创环检-S-[2019]210号

第2页 共3页

监测结果一览表

样品	样品	类别	废水	污染	原名称	废水	(
信息	采有	頻次	天三次, 共一	天 測点	(位置	总排印]
Wind Wood for held a could	5 (2007) 2005		监测:	结果		标准	单项
监测项目	单位	SF201912120 01	SF201912120 02	SF201912120 03	平均值	值	判定
水温	°C	15	15	15			
流量	m³/s	0.004	0.004	0.004			-
рН	无量 纲	7.10	7.19	7.20		6~9	达标
总氮	mg/L	3.56	3.90	3.68	3.71	35	达标
总磷	mg/L	0.020	0.011	0.012	0.014	0.5	达标
悬浮物	mg/L	8	12	9	10	50	达标
硫化物	mg/L	ND (0.005)	ND (0.005)	ND (0.005)	ND(0.005)	0.5	达标
氰化物	mg/L	ND (0.004)	ND (0.004)	ND (0.004)	ND(0.004)	0.2	达机
挥发酚	mg/L	0.0018	0.0006	0.0018	0.0014	0.1	达板
氨氮	mg/L	ND (0.025)	ND (0.025)	0.025	0.025	25	达标
化学需氧量	mg/L	5	6	5	5	80	达机

报告编号: 高创环检-Q-[2019]067号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	废 气
报	告	日	期:	2019年7月3日

报告编号: 高创环检-Q-[2019]067号

第2页 共17页

样品	污染源名		#余热锅炉		气筒高度		30m
信息	测点位置	至 1#哎	以气排气	〔筒 设备	运行负荷	1	00%
监测 日期	測试项 目	测试频次	含氧量	标态干排气 量 m³/h	实测浓度 mg/m³	折算浓度 mg/m³	排放速率 kg/h
	4	第一次	9.3	61690	22.4	23.5	1.38
	HEE SEA Alder	第二次	9.5	66110	21.3	22.4	1.41
	颗粒物	第三次	9.8	65797	23.2	24.4	1.53
		均值	9.5	64532	22.3	23.4	1.44
		第一次	9.3	61690	101	104	6.23
	氮氧化	第二次	9.5	66110	113	118	7.47
6.21	物	第三次	9.8	65797	105	112	6.91
		均值	9.5	64532	106	111	6.87
		第一次	9.3	41429	<3	- 12	
	二氧化	第二次	9.5	42229	<3	-	-
	硫*	第三次	9.8	42640	<3	-	-
	10021 3	均值	9.5	42099	<3		-
	林格	曼黑度			<1		
九行标准	颗粒物:	30 mg/m ³ ;	二氧化硫:	200 mg/m ³ ;	氮氧化物: 2	200 mg/m ³ .	
备注				西同源国益环境 监			
	1						1
测点位示意图	1#余热氧	另 炉	布	监测点位 02 袋	Φ=1. 2m 脱硫除尘器	100	n 30m

报告编号: 高创环检-Q-[2019]067号

第3页 共17页

測点位置 測试項 目 颗粒物	测试频次 第一次 第二次	风气排气筒 含氧量 % 8.4	标态干排 气量 m³/h	字测浓度 mg/m³	折算浓度 mg/m³	00% 排放速率
目	第一次第二次	% 8.4	气量 m³/h		100 miles 100 mi	
颗粒物	第二次		The Control of the Co	VI TISSE FORE	mg/m	kg/h
颗粒物			35687	23.2	23.9	0.828
积松物	444 444	9.5	35085	21.3	21.9	0.747
	第三次	10.1	35432	22.5	23.2	0.797
	均值	9.3	35401	22.3	23.0	0.791
	第一次	8.4	35687	167	159	5.91
氮氧化	第二次	9.5	35085	174	181	6.16
物	第三次	10.1	35432	161	177	5.70
	均值	9.3	35401	167	172	5.92
	第一次	8.4	41311	<3	-	10.7
二氧化	第二次	9.5	40624	<3		-
硫*	第三次	10.1	42419	<3	•	
	均值	9.3	41451	<3	-	
林格	曼黑度			<1		
颗粒物:	30 mg/m ³ ;	二氧化硫: 2	00 mg/m ³ ;	氮氧化物: 2	200 mg/m ³	
带 "*" 的	项目属分包项	目,由山西同	源国益环境监	蓝测有限公司系	聚样监测 。	
			监测点位 01	Ф=1. 2m	8m	
2#余热報	验	布袋除生	风机	脱硫除尘塔	22n	n
	二氧化 硫* 林格 颗粒物: 带 "*" 的	均値 第一次 第一次 第二次 第三次 第三次 均値 林格曼黑度 颗粒物: 30 mg/m³; 二	为值 9.3 第一次 8.4 第二次 9.5 第三次 10.1 均值 9.3 林格曼黑度 颗粒物: 30 mg/m³; 二氧化硫: 2 带 "*" 的項目属分包项目,由山西同	为值 9.3 35401 第一次 8.4 41311 二氧化 第二次 9.5 40624	均值 9.3 35401 167 第一次 8.4 41311 <3 <3 <5 <5 <5 <5 <5 <5	均值 9.3 35401 167 172 第一次 8.4 41311 <3 -

山西高创环保检测有限公司

监测报告

报告编号: 高创环检-Q-[2019]067号

第4页 共17页

样品	污染源名称	1#锅炉	1	排气僧	育高度	47m
信息	测点位置	烟囱		设备运	行负荷	100%
监测 日期	测试项目	测试频次	标态于 m ³	2000	实测浓度 mg/m³	排放速率 kg/h
		第一次	480	56	1.25×10 ⁻³	
	汞及其化合物	第二次	488	98	1.25×10 ⁻³	
6.19	*	第三次	468	97	1.25×10 ⁻³	
		均值	479	50		2-3-3
	林格曼	黑度			<1	
执行标准	汞及其化合物: 0.	05mg/m³。				
备注	带 "*"的项目属组 检出,以1/2 检出		西同源国益	环境监测有	「限公司采样监测。	汞及其化合物
						不

报告编号: 高创环检-Q-[2019]067号

第5页 共17页

	污染源名称	造粒塔		排气筒高度	74m
信息	测点位置	造粒塔塔	顶设	各运行负荷	98.6%
监测 日期	测试项目	测试频次	标态干排气 m³/h	量 实测浓/ mg/m³	1.7.74 2.60 3.10
		第一次	120000	24.2	2.90
	颗粒物	第二次	120000	22.9	2.75
	利贝介丛 10万	第三次	120000	23.8	2.86
6.19		均值	120000	23.6	2.84
0.19		第一次	120000	416	-
	臭气浓度*	第二次	120000	549	-
	关气袱皮*	第三次	120000	309	
		均值	120000	425	,
丸行标准	颗粒物: 120 mg/	/m³; 臭气浓度:	60000。		
备注	带 "*" 的项目属	分包项目,由山西		监测有限公司采样出	监测。臭气浓度无量 纲
备注 测点		分包项目,由山西 监测点位 2#			监测。臭气 浓度无量纲

报告编号: 高创环检-Q-[2019]067号

第6页 共17页

样品	污染源名称	尿素放空	管	排气信	高度	45m
信息	测点位置	尿素放空管排	气筒	设备运	行负荷	98.6%
监测 日期	测试项目	测试频次	100000000000000000000000000000000000000	F排气量 n³/h	实测浓度 mg/m³	排放速率 kg/h
		第一次	1	025	1.26×10 ⁴	12.9
C 10*	Arr +	第二次	1	100	1.40×10 ⁴	15.4
6.19*	氨*	第三次	1	126	1.21×10 ⁴	13.6
		均值	1	084	1.29×10 ⁴	14.0
执行标准	带 "*" 的项目原	好包项目,由山	西同源国	益环境监测有	有限公司采样监测	6
测点			Φ=0.	36m ⊚		

山西高创环保检测有限公司

监测报告

报告编号: 高创环检-Q-[2019]067号

第7页 共17页

	污染源名称	筛分机	排气管		15m	
信息	测点位置	筛分机排 ^左	〔筒 设备运	行负荷	21.2%	
监测 日期	测试项目	测试频次	标态干排气量 m³/h	实测浓度 mg/m³	排放速率 kg/h	
		第一次	10665	25.0	0.266	
6.21	mas de la falor	第二次	10288	27.9	0.287	
0.21	颗粒物	第三次	10064	29.2	0.294	
		均值	10339	27.3	0.282	
丸行标准	颗粒物: 120 mg/s	n³。				
测点	m					

报告编号: 高创环检-Q-[2019]067号

第8页 共17页

样品	污染源名称	甲醇罐区	ζ	排气管	高度	15m
信息	测点位置	甲醇罐区排	气筒	设备运	行负荷	32.8%
监测 日期	测试项目	测试频次	标态干排 m³//		实测浓度 mg/m³	排放速率 kg/h
		第一次	326	1	16.2	5.28×10 ⁻²
6.19	甲醇*	第二次	311	7	15.0	4.68×10 ⁻²
0.19	中田,	第三次	308	1	13.3	4.10×10 ⁻²
		均值	315	3	14.8	4.67×10 ⁻²
 人行标准	甲醇: 5.1kg/h。					
备注	带 "*" 的项目属	分包项目,由山	西同源国益廷	不境监测	有限公司采样监测].
测点位示意图	洗涤塔	活力	生炭吸附		Φ=0.4m ③	15m

报告编号: 高创环检-Q-[2019]067号

第9页 共17页

样品 信息	样品类别			非甲烷总烃*、 *、臭气浓度*	100	杂源 称	厂区
10.00	采样频次	一天三次	(一个参照点	, 三个监测点)	测点	位置	厂界
监测	监测项目	监测		监测结果		(单	位: mg/m³)
日期	皿例次口	频次	1#	2#	3#	4#	最大值
		第一次	0.246	0.328	0.348	0.430	
	颗粒物	第二次	0.206	0.309	0.350	0.330	0.453
		第三次	0.185	0.370	0.391	0.453	
		第一次	0.050	0.050	0.050	0.308	
	甲醇*	第二次	0.050	0.050	0.050	0.313	0.313
		第三次	0.050	0.050	0.050	0.295	
		第一次	0.003	0.011	0.022	0.009	
	酚类*	第二次	0.003	0.007	0.011	0.013	0.022
		第三次	0.004	0.009	0.013	0.017	
	臭气浓度*	第一次	<10	<10	<10	15	16
2019.6.1		第二次	<10	<10	16	<10	
		第三次	<10	<10	<10	14	
		第一次	0.006	0.010	0.014	0.009	
	硫化氢*	第二次	0.005	0.016	0.018	0.012	0.018
		第三次	0.006	0.014	0.016	0.015	
	*	第一次	1.02	1.19	1.19	1.16	
	非甲烷总烃*	第二次	1.00	1.10	1.30	1.21	1.30
		第三次	0.97	1.14	1.27	1.26	
		第一次	0.05	0.09	0.12	0.13	
	氨	第二次	0.03	0.07	0.10	0.15	0.15
		第三次	0.04	0.07	0.07	0.09	
执行标准				分类: 0.080mg/s 臭气浓度: 20。		完总烃: 4.0 n	ng/m³,
备注	1#为参照点,2 带"*"的项目	2#、3#、4#为 属分包项目,	监测点。 由山西同源	国益环境监测存 J 1/2 检出限报1	可限公司采	样监测。	

报告编号: 高创环检-Q-[2019]067-1号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测 ✓
样	品	类	别:	
报	告	日	期:	2019年7月3日

报告编号: 高创环检-Q-[2019]067-1 号

第2页 共4页

样品	污染源名称	造粒塔		排气筒	高度		74m
信息	测点位置	造粒塔塔	顶	设备运	行负荷		79.9%
监测 日期	测试项目	测试频次	标态干排 Nm³/		实测 mg/	CONTRACTOR OF	排放速率 kg/h
	on grown	第一次	12000	00	27	.7	3.32
- 20		第二次	12000	00	25	.0	3.00
6.30	氨	第三次	12000	00	21	.6	2.59
		均值	12000	00	24	.8	2.97
备注	造粒塔顶风量	无法统计,风量	量由厂家提信	共 120000	0m³/h。		14.7
测点位示意图	尿素车间	监测点位	φ=11.5 造 粒	Ī		74m	

报告编号: 高创环检-Q-[2019]119号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	
报	告	日	期:	2019年10月8日

山西高创环保检测有限公司

监测报告

报告编号: 高创环检-Q-[2019]119号

第2页 共16页

	污染源名	称 1	#余热锅炉	沪 排	气筒高度	3	30m
信息	测点位置	五 1#リ	次风气排华	气筒 设备	运行负荷	1	00%
监测 日期	測试项 目	测试频次	含氧量	标态干排气量 Nm³/h	实测浓度 mg/m³	折算浓度 mg/m³	排放速率 kg/h
		第一次	11.0	48800	<20		
	颗粒物	第二次	11.1	48752	<20		
	和贝尔里199	第三次	11.1	47335	<20		
		均值	11.1	48296	<20	<u> </u>	
9.16		第一次	11.0	48800	158	190	7.71
	氮氧化	第二次	11.1	48752	161	195	7.85
	物	第三次	11.1	47335	163	197	7.72
		均值	11.1	48296	161	194	7.76
	林格	曼黑度			<1		
		第一次	9.4	49033	<3	-	
0.20	二氧化	第二次	9.5	48999	<3		
9.20	硫	第三次	9.2	47503	<3	-	143
		均值	9.4	48512	<3		
				003, 0.401, 0.397	。(仅供参考)	
				003 (0.401) (0.39)	。(仅供参考)	1
测点位示意图	1#余热锅			监测点位 01	(V)(供参考 Φ=1. 2m 脱硫除尘器	10m	30m

100mman

山西高创环保检测有限公司 监 测 报 告

报告编号: 高创环检-Q-[2019]119号

第3页 共16页

	二氧化	型 2#呼测试频次 第二次 第三次 第三位 次 第三位 次 第三次 第三次 第三次 第三次 第三次 第三次 第三次	次风气排气筒 含氧量 % 10.7 11.4 11.7 11.3 10.7 11.4 11.3 11.1	标态干排 气量 Nm³/h 29845 33966 31364 31725 29845 33966 31364 31725	安 安 安 安 ッ を を を を を を を を を を を を を	打算浓度 mg/m³ 28.4 26.1 28.0 27.5 194 190 194	排放速率 kg/h 0.725 0.710 0.709 0.715 4.95 5.16 4.92 5.01
9.16	国 颗粒物 氮氧化 物 林格曼二氧化 硫	第二次第三次第三次第三次第二次第三次第二次第三次第三次第三次第三次第三次第三次第二次	% 10.7 11.4 11.7 11.3 10.7 11.4 11.3 11.1	气量 Nm³/h 29845 33966 31364 31725 29845 33966 31364 31725	mg/m³ 24.3 20.9 22.6 22.6 166 152 157 158 <1	mg/m ³ 28.4 26.1 28.0 27.5 194 190 194	kg/h 0.725 0.710 0.709 0.715 4.95 5.16 4.92
9.20	氮氧化物 林格曼二氧化 硫	第二次 第三次 均值 第二次 第三次 第三次 第三次 第三次 均值 第三次 均度 第三次	11.4 11.7 11.3 10.7 11.4 11.3 11.1	33966 31364 31725 29845 33966 31364 31725	20.9 22.6 22.6 166 152 157 158 <1	26.1 28.0 27.5 194 190	0.710 0.709 0.715 4.95 5.16 4.92
9.20	氮氧化物 林格曼二氧化 硫	第三次 均值 第二次 第二次 第三次 均值 景黑度 第二次	11.7 11.3 10.7 11.4 11.3 11.1	31364 31725 29845 33966 31364 31725	22.6 22.6 166 152 157 158 <1	28.0 27.5 194 190 194	0.709 0.715 4.95 5.16 4.92
9.20	氮氧化物 林格曼二氧化 硫	均值 第一次 第二次 第三次 均值 曼黑度 第一次 第二次	11.3 10.7 11.4 11.3 11.1	31725 29845 33966 31364 31725	22.6 166 152 157 158 <1	27.5 194 190 194	0.715 4.95 5.16 4.92
9.20	物 林格曼 二氧化 硫	第一次 第二次 第三次 均值 曼黑度 第一次 第二次	10.7 11.4 11.3 11.1	29845 33966 31364 31725 29992	166 152 157 158 <1	194 190 194	4.95 5.16 4.92
9.20	物 林格曼 二氧化 硫	第二次 第三次 均值 曼黑度 第一次 第二次	11.4 11.3 11.1	33966 31364 31725 29992	152 157 158 <1	190 194	5.16 4.92
9.20	物 林格曼 二氧化 硫	第三次 均值 曼黑度 第一次 第二次	11.3 11.1	31364 31725 29992	157 158 <1	194	4.92
9.20	林格 二氧化 硫	均值 曼黑度 第一次 第二次	11.1	31725 29992	158		
9.20	二氧化	受黑度 第一次 第二次	10.5	29992	<1	193	
9.20	二氧化	第一次 第二次		TOTAL WEST CONTROL OF THE PARTY			4.4.4.4
9.20	硫	第二次		TOTAL WEST CONTROL OF THE PARTY	⟨3		
9.20	硫		11.3			23 = 3	-
		第三次		34158	⟨3	53=3	-
执行标准 			11.7	31543	⟨3	-	-
九行标准 爿	-0.0	均值	11.2	31898	⟨3	-	5.
测点位示意图	2#余热锅	炉	布袋除尘	监测点位 01	Ф=1. 2m 脱硫除尘塔	22m	i.

山西高创环保检测有限公司

监测报告

报告编号: 高创环检-Q-[2019]119号

第4页 共16页

样品	污染源名称	35t 锅炒	Ť	排气箱	育高度	47m
信息	测点位置	烟囱	2	设备运	行负荷	100%
监测 日期	测试项目	测试频次	标态干排 Nm³/l	December 2	实测浓度 mg/m³	排放速率 kg/h
		第一次	48731		1.25×10 ⁻³	
	T 77 ++ 11. A 4L	第二次	47531	e L	1.25×10 ⁻³	3-4-8
9.20	汞及其化合物 -	第三次	48680)	1.25×10 ⁻³	
		均值	48314	1	1.25×10 ⁻³	R 2-W- 2
	林格曼	黑度			<1	
执行标准	汞及其化合物: 0.	.05mg/m³。				
备注	汞及其化合物未检	赴出,以 1/2 检出	出限报出。			
				监测点	•	. 6m
测点位示意图	35t/h 燃煤锅炉	脱硝	静电除尘			
点位示意	35t/h 燃煤锅炉	脱硝	静电除尘		12.	

报告编号: 高创环检-Q-[2019]119号

第5页 共16页

样品	污染源名称	造粒塔	排气作		74m
信息	测点位置	造粒塔塔	顶 设备运	行负荷	92%
监测 日期	测试项目	测试频次	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h
		第一次	120000	<20	-
	颗粒物	第二次	120000	<20	_
	本以作工12 0	第三次	120000	<20	
		均值	120000	<20	:0=5
		第一次	120000	<10	
9.17	臭气浓度*	第二次	120000	<10	(I = (
7.17	关机及	第三次	120000	<10	50 = 00 =
		均值	120000	<10	87 = 0
		第一次	120000	11.6	1.39
	氨	第二次	120000	1.16	0.139
	× [第三次	120000	27.2	3.26
		均值	120000	13.3	1.60
	1				
测点		监测点位 01	Φ=11.5×6m	1	

报告编号: 高创环检-Q-[2019]119号

第6页 共16页

样品	污染源名称	尿素放空管		排气管	育高度	45m	
信息	测点位置	尿素放空管排	汽筒	设备运	行负荷	92%	
监测 日期	测试项目	测试频次	100000000000000000000000000000000000000	F排气量 m³/h	实测浓度 mg/m³	排放速率 kg/h	
		第一次	1	058	9.50×10 ³	10.0	
0.17	le le	第二次	1	075	5.52×10 ³	5.93	
9.17	氨	第三次	1	078	5.11×10 ³	5.51	
		均值	1	070	6.71×10 ³	7.15	
九行标准	氨: 75kg/h。						
			Ф=0.	36m ⊚			

报告编号: 高创环检-Q-[2019]119号

第7页 共16页

信息	污染源名称 筛分机		排气作		15m	
1274	测点位置	筛分机排气	(筒 设备运	行负荷	30%	
监测 日期	测试项目	测试频次	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h	
		第一次	10018	45.4	0.455	
9.17	颗粒物	第二次	8582	39.6	0.340	
2117	45/12/10	第三次	7785	49.5	0.385	
		均值	8795	44.8	0.393	
执行标准	颗粒物: 120 mg/s	m³。				
	l .					

报告编号:高创环检-Q-[2019]119号

第8页 共16页

样品	污染源名称	甲醇罐区	排气管	育高度	15m
信息	测点位置	点位置 甲醇罐区排气筒 设备运行负荷		行负荷	32.8%
监测 日期	测试项目	测试频次	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h
		第一次	3094	18.4	0.057
0.17	田商金	第二次	3170	17.0	0.054
9.17	甲醇* -	第三次	3207	17.0	0.055
		均值	3157	17.5	0.055
执行标准	甲醇: 5.1kg/h。				
备注					
测点位示意				1	1 🛪

报告编号: 高创环检-Q-[2019]119号

第9页 共16页

样品信息	样品类别	氨、硫化氢	*、非甲烷总 类*、臭气浓	烃*、甲醇*、 注度*		杂源 称	厂区
后心	采样频次	一天三次	(一个参照点	,三个监测点) 测点	位置	厂界
监测	监测项目	监测		监测结	果	(单位	过: mg/m³
日期	血炽火日	频次	1#	2#	3#	4#	最大值
		第一次	0.05	0.05	0.05	0.05	
	甲醇*	第二次	0.05	0.05	0.05	0.05	0.05
		第三次	0.05	0.05	0.05	0.05	
		第一次 (0.003	0.010	0.016	0.026	
	酚类*	第二次	0.018	0.024	0.020	0.026	0.026
		第三次	0.014	0.016	0.019	0.023	
		第一次	<10	18	13	13	
	臭气浓度*	第二次	<10	14	15	17	18
2010 0 15		第三次	<10	17	18	16	
2019.9.16		第一次	0.002	0.004	0.003	0.009	
	硫化氢*	第二次	0.004	0.006	0.007	0.008	0.009
		第三次	0.004	0.008	0.008	0.009	
		第一次	0.32	0.41	0.55	0.37	
	非甲烷总烃*	第二次	0.34	0.56	0.52	0.45	0.56
		第三次	0.35	0.42	0.48	0.42	
		第一次	0.69	1.04	1.47	1.48	
	氨	第二次	0.36	1.01	1.40	1.43	1.48
		第三次	0.16	0.18	0.24	0.28	
执行标准	甲醇: ≦12 mg 硫化氢: ≦0.0					/m³,	
备注	1#为参照点,2 臭气浓度无量。			以 1/2 检出限打	及出。		

报告编号: 高创环检-Q-[2020]003 号

监测报告

委	托	单	位:	山西兰花科技创业股份有限公司化工分公司
受	测	单	位:	山西兰花科技创业股份有限公司化工分公司
监	测	类	别:	委托监测
样	品	类	别:	
报	告	日	期:	2020 年 1 月 1 日

山西高创环保检测有限公司

报告编号: 高创环检-Q-[2020]003 号

第2页 共11页

样品	污染源名	称 55t 锅	炉	排气筒高	万度	501	m
信息	测点位量	置 烟囱		设备运行	负荷	849	%
监测 日期	测试 项目	样品编号	标态干排 气量 Nm³/h	含氧量%	实测浓 度 mg/m³	折算 浓度 mg/m³	排放速 率 kg/h
	TL	QF20191212020	147644	11.8	ND		
	汞及 -	QF20191212021	139130	11.6	ND		
	其化	QF20191212022	139565	11.4	ND	3-0-	
	合物	均值	142113	11.6	ND		
		QF20191212016	147644	11.8	13.5	17.6	1.99
	颗粒	QF20191212017	139130	11.6	20.8	26.6	2.89
	物	QF20191212018	139565	11.4	21.7	27.1	3.03
	123	均值	142113	11.6	18.7	23.8	2.64
		第一次	147644	11.8	45	58	6.64
	氮氧	第二次	139130	11.6	43	55	5.98
2019.12.12	化物	第三次	139565	11.4	54	68	7.54
2017.12.12	1012	均值	142113	11.6	47	60	6.72
		第一次	147644	11.8	4	5	0.591
	二氧	第二次	139130	11.6	4	5	0.557
	化硫	第三次	139565	11.4	8	10	1.12
	10.9%	均值	142113	11.6	5	7	0.755
	-H- DII	QF20191212023	147644		2.09		0.309
	非甲一	QF20191212024	139130		2.16		0.301
	烷总	QF20191212025	139565		1.62		0.230
	烃	均值	142113	V=-V=-	1.96		0.280
	7	林格曼黑度			<1		
执行标准	汞及其化	合物: ≦0.05mg/m³, m³,林格曼黑度: ≦1			虱化硫: ≦20	00mg/m ³ ,	氮氧化物
备 注	汞及其化	合物未检出,以"NI	D"报出,方法	检出限为0	.0025mg/m ³	D	
监测点位示意图	55t/h 三废		一电二级除尘	监测点位(T _Φ	3.2m ©	50m
图			器				

报告编号: 高创环检-Q-[2020]003 号

第3页 共11页

样品	污染源名称	造粒塔	排气筒高	度	74m
信息	测点位置	造粒塔塔顶 设备运行		负荷	97%
监测 日期	测试项目	样品编号	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h
		QF20191212001	120000	26.4	3.17
	1007; de 3. of Am	QF20191212002	120000	24.7	2.96
	颗粒物	QF20191212003	120000	20.1	2.41
		均值	120000	23.7	2.85
		QF20191212007	120000	416	3#
2019.12.	to be shots a	QF20191212008	120000	309	-
12	臭气浓度*	QF20191212009	120000	549	
		均值	120000	425	-
		QF20191212004	120000	4.63	5.56×10 ⁻¹
	-	QF20191212005	120000	6.31	7.57×10 ⁻¹
	氨	QF20191212006	120000	21.7	2.60
		均值	120000	10.9	1.30
执行标准	颗粒物: ≦120	mg/m³; 臭气浓度; ≦	€60000; 氨: ≦75kg/l	h.	
备 注	臭气浓度无量组				
测点位示意图	尿素车间	监测点位 01 <u></u>	11.5×6m	74m	
			塔		

报告编号: 高创环检-Q-[2020]003 号

第4页 共11页

				Α.	TX XII
样品	污染源名称	尿素放空管	排气筒	高度	45m
信息	测点位置	尿素放空管排气	筒 设备运行		97%
监测 日期	测试项目	样品编号	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h
		QF20191212010	1440.86	2.74×10 ³	3.95
10.10	复	QF20191212011	1537.65	2.34×10 ³	3.60
12.12	氨	QF20191212012	1415.80	2.22×10 ³	3.15
		均值	1464.77	2.43×10 ³	3.57
执行标准	氨: ≦75kg/h。				10.1011
测点位示意图		尿素単元	=0.36m 🏵	45m	

2回日曜

山西高创环保检测有限公司 监 测 报 告

报告编号:高创环检-Q-[2020]003号

第5页 共11页

样品	污染源名称	甲醇罐区	排气筒高	5度	15m
信息	测点位置	甲醇罐区排气筒	设备运行	负荷	29.6%
监测 日期	测试项目	测试频次	标态干排气量 Nm³/h	实测浓度 mg/m³	排放速率 kg/h
30.000.000		QF20191212013	1956	8.11	15.9×10 ⁻³
10.10	DT AND A	QF20191212014	1909	5.31	10.1×10 ⁻³
12.12	甲醇*	QF20191212015	2002	6.36	12.7×10 ⁻³
		均值	1956	6.59	12.9×10 ⁻³
 人行标准	甲醇: ≦5.1kg/h	lo.			
备注					
				1 1	不
测点位示意图	洗涤塔	活性炭		©=0.4m →⊚	15m

报告编号: 高创环检-Q-[2020]003 号

第6页 共11页

样品信息	样品类别	(氨、硫化	无组织 氢*、非甲烷 臭气浓度*	总烃*、苯并芘	*	染源 称	广区
10 70	采样频次	一天三次	(一个参照点	, 三个监测点)	測点	位置	厂界
监测	监测项目	监测		监测结	果	(单	位: mg/m³)
日期	III WINA	频次	1#	2#	3#	4#	最大值
		第一次	0.06	0.11	0.15	0.15	
	氨	第二次	0.03	0.17	0.10	0.06	0.26
		第三次	0.02	0.11	0.16	0.26	
		第一次	0.15	1.4	6.1	0.15	
	苯并芘* (ng/m³)	第二次	1.9	5.6	2.1	3.5	6.1
		第三次	0.15	0.4	2.4	0.15	
		第一次	<10	16	17	12	
2019.12.12	臭气浓度*	第二次	<10	12	18	14	18
		第三次	<10	17	18	18	
		第一次	0.017	0.016	0.015	0.013	
11	硫化氢*	第二次	0.006	0.011	0.013	0.012	0.017
		第三次	0.007	0.015	0.014	0.017	
		第一次	1.75	2.09	1.86	1.93	
	非甲烷总烃*	第二次	2.05	1.76	1.41	1.98	2.09
		第三次	1.85	1.60	1.71	1.70	
执行标准	非甲烷总烃:≦ 臭气浓度:≦2		求并芘: ≦0.0	08ug/m³, 硫化	氢: ≦0.06	mg/m³, 氨:≦	§1.5 mg/m³,
各注	1#为参照点,2 臭气浓度无量约		监测点。				

附件五:废水、烟气在线监测数据

污水排放连续监测日平均值月报表

污染源名山西兰花科技创业股份有限公

称: 司化工分公司

监控点名称: 废水排放口

监测时间: 2019年 1月

m.l.e.s	化学需氧	量(COD)	氨	氦	地口学具/eb
时间	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	排口流量(吨
1 日	10.07	0.87	0.20	0.02	86.67
2 日	9.84	0.84	0.20	0.02	85.81
3 日	9.73	0.83	0.20	0.02	84.98
4 日	10.14	0.83	0.20	0.02	81.72
5 日	10.77	0.90	0.20	0.02	83. 28
6 日	9. 58	0.79	0.23	0.02	82. 93
7 日	10.81	0.83	0.83	0.06	76. 97
8 日	11.79	0.80	0.20	0.01	68.17
9 日	12.03	0.93	0.51	0.04	76.90
10日	12.63	0.96	0.20	0.02	76. 18
11日	9. 29	0.70	0.19	0.01	75. 28
12日	10.00	0.74	0.20	0.02	73. 78
13日	10. 19	0.68	0.21	0.01	66. 25
14日	9.07	0.56	0.44	0.03	62.00
15日	5.72	0.38	0.19	0.01	65.64
16日	6. 78	0.46	0.18	0.01	68.56
17日	6.00	0.39	0.15	0.01	64.72
18日	7.54	0.53	0.20	0.01	69.72
19日	7.89	0.46	0.16	0.01	58. 84
20日	8. 63	0.54	0.01	0.00	62.02
21日	8.05	0.51	0.47	0.03	63, 82
22日	6.91	0.41	0.64	0.04	59.48
23日	6. 92	0.42	0.58	0.03	60. 22
24日	6. 99	0.43	0.51	0.03	61.56
25日	5. 61	0.33	0.44	0.03	59. 39
26日	5. 84	0.37	0.34	0.02	62.68
27日	5. 94	0.34	0.26	0.01	57.61
28日	5. 83	0.35	0.16	0.01	59. 26
29日	6.75	0.39	0.37	0.02	58. 21
30日	5. 52	0.34	0.03	0.00	61.95
31日	6.10	0.40	0.02	0.00	66. 13
平均值	8. 35	0.59	0.28	0.02	69.06
最大值	12. 63	0.96	0.83	0.06	86.67
最小值	5. 52	0.33	0.01	0.00	57.61
月排放总量		18.31		0.60	2140.73

污染源名 山西兰花科技创业股份有限公

称: 司化工分公司

监控点名称: 废水排放口

监测时间: 2019年 2月

t d	化学需氧	(量(COD)	氨	氮	LIL - Ver E / net
时间	浓度(毫克/升)		浓度(毫克/升)		排口流量(吨
1日	5. 82	0.36	0.02	0.00	62. 15
2 日	5. 27	0.27	0.02	0.00	51.52
3 日	5. 78	0.32	0.03	0.00	55. 61
4 日	5.81	0.33	0.03	0.00	56. 95
5 日	5. 93	0.32	0.03	0.00	53.68
6 日	6.50	0.36	0.48	0.03	55. 14
7 日	5, 36	0.36	0.03	0.00	66.62
8 日	5, 54	0.35	0.04	0.00	62.44
9 日	5. 75	0.36	0.03	0.00	62.39
10日	5. 41	0.34	0.03	0.00	61.98
11日	6.90	0.45	0.18	0.01	65. 83
12日	7. 27	0.45	1.69	0.10	61.90
13日	8. 28	0.53	0, 15	0.01	64. 37
14日	7.15	0.47	0.16	0.01	65. 75
15日	6.65	0.45	0.19	0.01	67.62
16日	8.74	0.60	0.23	0.02	68. 18
17日	7.75	0.52	0.27	0.02	66. 57
18日	7. 18	0.48	0.31	0.02	66. 20
19日	5. 98	0.40	1.64	0.11	67.06
20日	6. 58	0.43	1.95	0.13	66.01
21日	6.68	0.43	1.88	0.12	64.67
22日	6.77	0.39	1.80	0.10	58. 13
23日	6.86	0.42	1.71	0.11	61.38
24日	7. 37	0.42	1.61	0.09	57.59
25日	7. 26	0.42	1.50	0.09	57. 52
26日	7. 58	0.45	1.38	0.08	59.68
27日	8.34	0.51	1.27	0.08	61.02
28日	8.88	0.62	1.15	0.08	69.37
平均值	6.76	0.42	0.71	0.04	62.05
最大值	8. 88	0.62	1.95	0.13	69.37
最小值	5. 27	0.27	0.02	0.00	51, 52
排放总量		11.80		1. 24	1737.33

污染源名山西兰花科技创业股份有限公 称: 司化工分公司

监控点名称:

监测时间: 2019年 3月

m.L.A-1	化学需氧	(量(COD)	氨	氦	排口流量(吨)	
时间	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	排口流重(吧)	
1 日	9. 21	0.88	1.03	0.10	95.25	
2 日	11.04	1.09	0.93	0.09	99.11	
3 日	9.61	1.48	0.03	0.00	153. 81	
4 日	8.98	0.77	0.04	0.00	86.23	
5 日	7.07	0.50	0.18	0.01	71.39	
6 日	5. 33	0.42	0.04	0.00	78, 79	
7 日	5. 20	0.39	0.03	0.00	75.09	
8 日	6.30	0.46	0.04	0.00	72, 55	
9 日	6.39	0.44	0.05	0.00	69. 58	
10日	5. 38	0.38	0.03	0.00	71. 22	
11日	6.51	0.47	0.27	0.02	72.16	
12日	8.87	0.60	0.48	0.03	68.08	
13日	7.24	0.51	0.07	0.00	70.75	
14日	8. 59	0.61	0.09	0.01	71.42	
15日	8.92	0.64	0.08	0.01	72. 28	
16日	8.56	0.58	0.08	0.01	67.31	
17日	9.42	0.64	0.07	0.01	67.78	
18日	6.19	0.39	0.06	0.00	62. 92	
19日	6.09	0.39	0.06	0.00	64.34	
20日	6.61	0.43	0.05	0.00	65. 42	
21日	10. 26	0.79	0.40	0.03	76, 63	
22日	6.01	0.42	0.01	0.00	69. 18	
23日	5. 94	0.23	0.01	0.00	38.89	
24日	5.65	0.22	0.03	0.00	39.77	
25日	5. 45	0. 22	0.04	0.00	39.60	
26日	5. 55	0.19	0.03	0.00	34. 36	
27日	5. 44	0.18	0.03	0.00	33.94	
28日	4. 96	0.29	0.03	0.00	59.19	
29日	6.84	0.39	0.57	0.03	56.89	
30日	5. 75	0.36	0.09	0.01	62.84	
31日	7. 09	0.48	0.09	0.01	67.55	
平均值	7.11	0.51	0.16	0.01	68. 85	
最大值	11.04	1.48	1.03	0.10	153.81	
最小值	4.96	0.18	0.01	0.00	33.94	
月排放总量		15. 87		0.40	2134.32	

污染源名 山西兰花科技创业股份有限公

监控点名称: 废水排放口

监测时间: 2019年 4月

n.t.bet	化学需氧	(量 (COD)	包	氨	Ä	磷	為	復		
时间					浓度(毫克/升)	排放量(千克)	浓度(毫克/升)		ph值	排口流量(吨)
1日	6.94	0.51	0.08	0.01			0.00	0.00		72, 87
2 日	8.04	0.54	0.08	0.01			0.00	0.00		66, 61
3 日	7.36	0.46	0.07	0,00			0.00	0.00		62.50
4 日	7.50	0.44	0, 54	0.03			0.00	0.00		59.09
5日	5.29	0.32	0.24	0.01			0.00	0.00		61.00
6 日	5. 24	0.34	0.22	0.01			0.00	0.00		64, 48
7 日	5. 50	0.32	0.21	0.01			0.00	0.00		57, 69
8 E	11.86	0.66	0.69	0.04			0.00	0.00		55.39
9 日	8.09	6.42	0.30	0, 24			0.00	0.00		793, 43
10日	8. 51	0.64	0.20	0.02			0.00	0.00		75.01
11日	6. 54	0.43	0.20	0.01			0.00	0.00	40	65.06
12日	7. 28	0.41	0.18	0.01			0.00	0.00		55.76
13日	5.89	0.46	0.15	0.01			0.00	0,00		78.85
14日	6.50	0.45	0.15	0.01			0.00	0.00	1117	69.60
15日	6, 68	0.36	0.13	0.01			0.00	0.00		53.50
16日	6.05	0.33	2. 18	0.12			0.00	0.00		54. 82
17日	3.41	0.19	0.07	0.00			2, 75	0.16		56, 67
18日	3, 56	0.21	0.25	0.01			6. 65	0.40	tes a militaria.	59.37
19日	3.87	0. 25	0.44	0.03			0.00	0.00		64.30
20日	3.29	0.19	0.06	0,00			24. 33	1.38		56.82
21日	17.14	2.51	4.54	0.66		and the state of t	37.88	5.54		146, 21
22日	5.74	0.32	0.40	0.02	A company of the	75	9. 22	0.52		56.43
23日	6.03	0.53	0.45	0.04			62. 87	5.49		87.32
24日	8. 23	1.55	0.38	0, 07			62, 87	11.81		187. 87
25日	8.18	0.63	0.78	0.06			0,00	0,00		77, 26
26日	9.30	0.60	0.15	0.01			0.00	0.00		64. 26
27日	10. 45	1.32	1.17	0.15			0.00	0.00		126, 74
28日	7.47	0.48	0.11	0.01			0.00	0.00		64. 24
29日	9.20	0.53	0.32	0.02			0.00	0.00		57.65
30日	8, 33	0.43	0.30	0.02	2		0.00	0.00		52. 03
平均值	7, 25	0.76	0.50	0.06			6.89	0.84		96, 76
最大值	17.14	6.42	4.54	0, 66			62. 87	11. 81		793. 43
最小值	3.29	0.19	0.06	0.00	(c		0.00	0,00		52, 03
排放总量		22.82		1.66	A			25. 29		2902. 83

污染源名 山西兰花科技创业股份有限公

监控点名称: 废水排放口

监测时间: 2019年 5月

时间	化学需氧		氨	氦	Ä	磯	, M	氮		Taman Consessor
	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	ph值	排口流量(吨)
18	8. 26	0, 49	0.31	0.02			13.00	0.77		59, 27
2 日	8, 91	0.86	0.39	0.04			13.00	1, 25		96. 22
3 ⊟	9.02	0.85	0.23	0.02			13.00	1. 22		94.10
4日	9, 27	0.49	0.26	0.01			13, 00	0.68		52. 44
5 日	7.73	0.52	0.18	0, 01			13.00	0.87		66, 98
6 日	10.76	0.69	0.35	0.02			13.00	0.83		64, 09
7 日	7. 83	0.47	0.31	0.02			13.00	0.78		59.85
8 🖯	8.50	0.46	0.32	0.02			13.00	0.70		53, 63
9 日	5. 83	0.26	0.29	0.01			13, 00	0.57		44. 06
10日	5. 25	0.13	0.29	0.01			13.00	0.32	-	24. 26
11日	4, 55	0.14	0.19	0.01			9. 52	0.30		31.16
12日	4.90	0.18	0.19	0, 01			9.52	0.35		36, 27
13日	5. 03	0,21	0.13	0.01			9. 52	0.40		41.58
14日	7.87	0. 26	0, 48	0.02			9, 52	0.31		32.94
15日	4. 48	0.11	0.03	0.00			9, 52	0. 23		24. 54
16日	5.84	0.17	1.53	0.04			9, 52	0.27		28, 52
17日	5.56	0.12	0.09	0.00			9, 52	0.20		21. 40
18日	5.66	0.17	0.16	0.00			9.52	0.28		29. 66
19日	4.00	0.10	0.04	0.00			9.52	0.23		23.96
20日	4.32	0.11	0.04	0.00			9.52	0. 25		25. 87
21日	4.62	0.11	0.06	0.00			7.99	0.20		24.84
22日	51.66	1.87	1.09	0.04			7.99	0, 29		36. 19
23∃	4.41	0.09	0.08	0.00			7.99	0.16		20.32
24日	6.10	0.14	1.17	0.03			7.99	0.18		23, 04
25日	4.33	0.09	0.06	0.00			7, 99	0.17		21, 56
26日	4.76	0.09	0.17	0.00			7, 99	0.15		19.32
27日	4,61	0.12	0.04	0.00			7.99	0, 21		25.65
28日	4.67	0.18	0.33	0.01			7.99	0.31		38, 23
29日	6.17	0.16	0.94	0. 02			7.99	0.21	1.0	26.60
30日	6.84	0.17	0.60	0.01			7.99	0.20		24. 92
31日	4. 83	0.18	0.08	0.00			13.57	0.50	417	36.82
平均值	7.63	0.32	0.34	0. 01			10. 28	0.43		38, 98
最大值	51.66	1, 87	1.53	0.04			13. 57	1, 25	William .	96, 22
最小值	4.00	0.09	0.03	0.00			7.99	0.15		19.32
月排放总量		9.97	V-2	0.40				13. 39		1208. 29

污染源名 山西兰花科技创业股份有限公

监控点名称: 废水排放口

监测时间: 2019年 6月

时间	化学需率	(遺 (COD)	2 (0)	, 33(determine some pour
ii.i. 1∈0	浓度(毫克/升)	排放量(干克)	浓度(毫克/升)	排放量(干克)	排口流量(吨)
1 =	5.04	0, 08	0.24	0. 00	16.69
2 🖽	3.55	0.05	0.04	0. 00	13.72
3 🗏	5. 56	0. 08	0. 69	0. 01	15.03
4 🗆	4.11	0. 07	0.12	0. 00	16.60
5 🗐	13.75	9. 18	0. 65	0.43	667. 44
6 日	3, 62	0. 22	0.38	0. 02	61.46
7 日	2. 75	0. 23	0. 03	0, 00	83.74
8 🖂	2.54	0. 20	0. 03	0. 00	77. 00
9 🗏	2. 69	0. 16	0.04	0.00	59. 18
10日	2. 82	0. 17	0.04	0.00	59. 50
11日	2.65	0.18	0. 03	0.00	67. 50
12 🗏	2.79	0.14	0.03	0.00	51.16
13 🖂	4. 47	0. 29	0.93	0.06	65.94
14日	2.78	0.18	0. 03	0.00	66. 16
15日	2. 60	0.17	0. 03	0.00	64. 49
16日	2. 65	0.16	0. 03	0. 00	58. 70
17日	4. 51	0.30	0. 03	0.00	66. 67
18日	8. 97	0. 92	0.04	0.00	102.68
19日	8. 62	0. 96	0.04	0.00	111. 35
20日	8.39	1.13	0.04	0. 01	134.05
21 ⊟	8.78	1.05	0. 03	0.00	119.43
22 ⊟	8. 18	0. 97	0.04	0. 00	118. 96
23日	7.03	0. 79	0.04	0. 00	112. 17
24 EI	8. 07	1.03	0.09	0. 01	127. 34
25 EI	7. 89	0.95	0.75	0. 09	120. 92
26日	8.06	1.07	0.18	0. 02	132. 71
27日	7. 78	1.00	0. 29	0.04	128. 28
28日	8.14	1.27	0.30	0. 05	155.95
29日	7.58	1.09	0.30	0.04	144.17
30日	7. 26	0. 96	0. 25	0. 03	132.33
平均值	5.79	0. 83	0.19	0.03	105.04
最大值	13.75	9. 18	0. 93	0. 43	667. 44
最小值	2.54	0. 05	0.03	0. 00	13.72
月排放总量		25. 05		0.87	3151.32

污染源名 山西兰花科技创业股份有限公

监控点名称: 废水排放口

监测时间: 2019年 7月

m.1.603	化学需氧	(量(COD)	氨	飯	.63	磷	总	氮		
时间					浓度(毫克/升)	排放量(千克)			ph值	排口流量(吨
3	8, 36	1, 18	0, 29	0.04			11.47	1, 61		140, 73
2 日	6. 43	0.70	0, 15	0, 02			11.47	1.24		108, 33
3 日	7, 86	0.89	0.15	0.02			11, 47	1.30		113, 45
4 El	5, 96	0.73	0.03	0.00	P		11.47	1.41		122, 92
5 日	4, 94	0, 68	0.04	0.01	4		11.47	1.59		138, 33
6 日	6, 52	0.82	0.04	0, 01			11.47	1.45		126, 27
7 日	6, 64	0.73	0.05	0.01			11, 47	1. 25		109.18
8 日	6, 51	0.83	0, 05	0.01			11, 47	1.46		127.61
9 El	7, 29	6.37	0.47	0.41	8		11, 47	10.01		872, 98
10日	9.19	8.72	0.16	0.15			11. 47	10.88		948. 82
11日	13. 12	2.62	4.70	0.94			28. 43	5, 69		199, 98
12日	14. 43	5, 21	0, 37	0.13			28.43	10.26		360.74
13⊟	12.82	6, 17	0.04	0.02			28, 43	13, 69		481, 43
14日	13.86	6.95	1, 89	0.95			32.06	16, 07		501.33
15日	14.11	6.05	0.15	0.06			40.10	17. 20		428, 96
16日	10, 19	4.44	0.15	0.06			40.09	17.46		435, 63
17日	10.13	6.31	0.04	0.02	8		27, 93	17.40		622, 72
18日	8. 46	6. 22	0.03	0.02			1.14	0.84		735. 76
19日	10.62	6.95	0.03	0.02			0.78	0.51		654. 12
20日	11.46	8. 29	0.04	0.03	B 3		1.07	0.78		723. 58
21日	10.32	5. 29	0.03	0.02			0.68	0.35		512, 70
22日	11.21	6. 22	0.03	0.02			0.57	0.32		555.09
23日	10.62	6.19	0.05	0.03			2.42	1.41		582. 67
24日	9, 69	5. 67	0.04	0.02			2.06	1.21		584. 78
25日	9.98	5.90	0.04	0,02			2,02	1.19		590, 86
26日	10.10	6, 25	0.13	0.08			1.89	1, 17		618, 37
27日	12.50	9.90	0.78	0.61			4.80	3.80		791.90
28日	9, 28	6.00	0.03	0.02			2.11	1.36		646. 28
29日	10, 27	6.64	0.51	0, 33			1.67	1.08		646, 18
30日	9.32	5, 02	0.16	0.08			1.68	0.90		538, 16
31日	10.30	3. 23	1.71	0.54			3.04	0.95		313, 48
平均值	9, 76	4.75	0.40	0.15	9		11.81	4, 71		462, 37
最大值	14. 43	9.90	4, 70	0.95			40.10	17.46		948, 82
最小值	4, 94	0, 68	0.03	0,00			0.57	0.32		108, 33
月排放总量		147.16		4.69			. HereVerne	145, 86		14333, 34

污染源名 山西兰花科技创业股份有限公

监控点名称: 废水排放口

监测时间: 2019年 8月

	化学需氧	(量(COD)	氨	氨	总	磷	1 140	Alle era Nete IIII. Zanto
时间	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	ph值	排口流量(吨
1 日	10, 60	3, 89	0, 07	0.03				367.15
2 日	11.42	3.96	0.29	0, 10				346, 92
3 日	11. 22	5. 85	0.04	0.02				521. 34
4 日	18. 48	17.06	5.64	5. 21				923, 19
5 日	11.71	7.13	0.76	0.46				609. 27
6 El	10.13	5. 73	0.17	0, 10				565, 12
7 日	9, 60	5. 10	0.31	0, 16				531. 52
8 El	11.02	5. 97	0.13	0.07				542, 09
9 日	11.09	5, 66	0.08	0.04				509, 90
10日	10.30	5. 35	0.08	0.04				519.37
11日	11. 91	5. 98	0.09	0.05				502.47
12日	12. 28	6.00	0.10	0.05				488, 64
13日	12.06	6, 00	0.09	0.04				497.16
14日	11.86	5. 64	0.71	0.34				475, 53
15日	11.87	5. 32	0.89	0.40				448. 33
16日	12.30	5. 47	0.86	0.38				444. 67
17日	12.07	5.40	0.84	0.38				447. 48
18日	11.83	5. 15	0.84	0.37				434. 89
19日	11. 75	5. 07	0.81	0.35				431.49
20日	11.77	4.88	0.78	0.32				414.41
21日	14.40	5.76	1.95	0.78				400. 29
22日	10.23	4.55	0.68	0.30				444, 46
23日	9, 46	4. 33	0.85	0.39				457.73
24日	9.30	4, 85	0.46	0.24				522.00
25日	14.04	8, 22	1.78	1.04				585. 13
26日	10.69	4. 81	1.20	0.54				450, 45
27日	9. 43	3.82	0.09	0.04				405, 42
28日	9.67	3.82	1.48	0.59				394, 82
29日	9, 23	4.14	0.07	0.03				449.06
30⊟	9. 67	4, 68	0.15	0.07				483. 85
31日	10.02	4.86	0.09	0.04				484. 70
平均值	11.34	5. 63	0.72	0.42	3			487.06
最大值	18, 48	17.06	5. 64	5, 21				923. 19
最小值	9, 23	3.82	0.04	0.02				346. 92
排放总量		174, 46		12. 97				15098.85

污染源名山西兰花科技创业股份有限公司化工分公司

监控点名称: 废水排放口

监测时间: 2019年 9月

mak dari	化学需氧	(量(COD)	氨	氮	总	磷	1. 114	HE make Mr. (mb)
时间	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	ph值	排口流量(吨
1 日	10. 23	4. 54	0.06	0.03				443. 46
2 日	10.49	4.56	0.03	0.01				434. 43
3 日	11, 55	4. 29	0. 20	0.07				371.62
4 日	11.52	5.95	0.05	0, 02		3		516, 11
5 日	12.45	6, 33	0.04	0, 02				508. 79
6 日	12.70	5. 58	0.03	0.01				439. 29
7 日	12.64	6.12	0.04	0, 02				484.10
8 日	11. 93	5.79	0.04	0.02				485, 50
9 日	12.05	5. 90	0.04	0, 02				489. 35
10日	13.34	5. 69	0.68	0, 29				426.66
11日	28, 97	49. 36	3.05	5. 20				1703, 94
12日	11.11	5. 29	0.07	0.03				476. 27
13日	12, 35	6. 07	0.02	0.01				491.18
14日	12.09	4.94	1.13	0.46				408. 78
15日	13. 87	7.04	0.04	0.02				507. 92
16日	13.07	4.96	3, 30	1, 25				379.34
17日	10.24	2, 96	3.15	0.91				289. 32
18日	12. 27	6.11	0.03	0.02				497. 98
19日	16. 98	9, 19	0.37	0.20				541.22
20日	12.09	5.66	0.62	0. 29				468. 02
21日	12.96	6.46	0.04	0.02				498, 88
22日	14.50	5. 94	0.04	0.02				409.44
23日	12.84	5. 83	0.03	0.01				453.98
24日	14. 59	7, 24	0.30	0, 15				495, 86
25日	11.31	2.96	0.10	0.03				262.00
26日	5, 64	0.73	0.10	0, 01				128.67
27日	5, 89	0, 77	0.08	0.01				130.08
28日	5.56	0.70	0.07	0.01				126, 67
29日	5, 57	0.66	0.05	0.01				118, 37
30日	4,06	0, 43	0.04	0,00				106.45
平均值	11.83	6, 27	0.46	0.31				436. 46
最大值	28. 97	49. 36	3, 30	5. 20				1703.94
最小值	4.06	0, 43	0, 02	0.00				106.45
月排放总量		188, 04		9. 17				13093, 68

污染源名 山西兰花科技创业股份有限公司化工分公司 监控点名称: 废水排放口

品、例如:195: 2019年 10月	监沙	肘门间	: 201	9年	10月
---------------------	----	-----	-------	----	-----

时间	化学需氧	(蛩 (COD)	夕 (褒 〔	1 / 1	Addition to seek the control
	浓度(毫克/升)	排放置(干克)	浓度(毫克/升)	排放量(千克)	ph值	排口流量(吨)
1 🖽	3.82	0.40	0.05	0. 00		103. 59
2 日	3.76	0.37	0. 03	0.00		97. 98
3 E	3.84	0.39	0, 05	0.00		101. 59
4 日	5.18	0, 60	0.38	0.04		116.38
5 日	5.81	0.68	0.17	0. 02		114,77
6 E	11.42	1,77	0, 90	0, 14		154. 83
7 🖯	7.01	0.77	0, 22	0. 02		109. 39
8 🗏	6.87	0.86	0.12	0. 02		125. 13
9 日	11.49	1.76	1.29	0, 20		163.33
10日	8. 70	0.88	0. 25	0. 03		101.63
11 🗒	5. 80	0.55	0.08	0. 01		94. 99
12日	4.86	0.42	0.08	0.01		85, 80
13 🗐	4.96	0.42	0.43	0.04		85. 04
14	5.38	0.54	0.10	0. 01		101.11
15E	5.36	0.45	0. 03	0.00		83, 80
16EI	5.28	0.46	0.05	0.00		86. 54
17日	6.82	0.45	0. 22	0. 02		78. 12
18日	5.60	0.45	0.05	0. 00		81. 17
19日	5.06	0.41	0. 03	0.00		80. 09
20日	5, 23	0.47	0.04	0.00		89. 24
21日	10. 35	1.06	0.04	0.00		101.96
22日	20. 20	2.03	0.31	0.03		100. 35
23日	7. 96	0. 68	0.07	0. 01		85. 79
24日	8.00	0.87	0.02	0. 00		108. 62
25日	7.82	0.85	0. 03	0.00		109. 02
26日	7.53	0.62	0.16	0. 01		82. 24
27日	7.36	0.76	0.04	0. 00		103. 56
28⊟	7. 59	0.75	0.06	0. 01		99. 16
29日	7.42	0.67	0.42	0.04		90. 44
30 ⊟	5. 27	0.48	0. 03	0.00		91.54
31日	5.11	0.46	0.03	0.00		90. 45
平均值	6, 96	0.72	0.19	0. 02		100, 25
最大值	20. 20	2.03	1, 29	0. 20		154.83
最小值	3.76	0.37	0.02	0. 00		78. 12
月排放总量		22. 34		0, 69		3107.65

污染源名 山西兰花科技创业股份有限公司化工分公司 监控点名称: 废水排放口

监测时间: 2019年 11月

监测时间:	2019年 11月					
L A==1	化学需氧	(量 (COD)	氨	領し	_ 1_ fdc	排口流量(吨)
时间	浓度(毫克/升)	排放量(千克)	浓度(毫克/升)	排放量(千克)	ph值	す事 1-1 2/1C 温度 くいもう
1 🖂	5. 10	0.49	0, 04	0.00		96. 67
2 目	5. 18	0. 56	0.04	0.00		108.00
3 日	5, 12	0.60	0.06	0. 01		116.69
4 日	5. 52	0.75	0. 02	0.00		135. 82
5 El	5, 28	0.81	0. 03	0. 01		154. 32
6 🖽	5. 11	0.66	0.03	0.00		129. 34
7 🗏	6. 58	0, 86	0.34	0.04		130. 02
8 EI	7. 21	0.94	0.09	0. 01		129. 94
9 E	15. 96	2.05	0.06	0.01		128. 29
10日	6. 86	0, 87	0.03	0.00		127. 43
113	7.36	0.89	0.04	0.00		120. 95
12日	7.31	0.82	0. 03	0.00		111.76
13日	7.87	1.05	0. 03	0.00		132. 93
14日	7, 99	1.03	0. 41	0.05		128. 47
15日	5.40	0.61	0, 04	0.00		113.11
16日	6. 73	0.79	0. 03	0.00		117.52
17日	6.75	0.94	0.04	0.00		139, 82
18日	6.42	2.40	0.04	0. 01		374.46
19日	5.72	2.34	0.04	0. 01		410.06
20日	6.15	2. 93	0, 13	0.06		476.77
21日	6.51	2.88	0, 29	0.13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	443.08
22日	6. 99	3.03	0.17	0. 07		433.36
23日	5.88	2. 20	0.04	0.01		374. 57
24日	6.21	2. 52	0.03	0. 01	***************************************	405.98
25日	6. 25	1.76	0.08	0. 02		281.31
26日	6. 93	0.75	0.14	0.02		108. 80
27日	6.39	0.60	0.03	0.00		94. 04
28日	5.94	0.62	0.03	0.00		104.56
29日	5, 71	0.60	0.03	0.00		105.09
30⊟	6.08	0.65	0.03	0. 00	***************************************	107. 16
平均值	6.62	1.27	0.08	0. 02		194. 68
最大值	15. 96	3.03	0.41	0.13		476. 77
最小值	5. 10	0.49	0.02	0.00		94. 04
月排放总量		38. 01		0.55		5840. 32

污染源名 山西兰花科技创业股份有限公司化工分公司

监控点名称: 废水排放口

监测时间: 2019年 12月

ATT. 1989 H G TOUS	2013-1 12/7					
क्ष्यं वि	化学需氧		褒(,褒(t- AM	排口流量(吨)
היו היו	浓度(毫克/升)	排放量(干克)	浓度(毫克/升)	排效量(干克)	ph值.	ALD AUSE (DE)
1 🗏	6.37	0.72	0.04	0.00		113, 29
2 🗏	7. 29	0. 97	0.04	0.00		132.88
3 ⊟	7. 95	0.98	0. 22	0. 03		123.05
4 🖯	8.11	0.92	0. 07	0, 01		112. 91
5 🖯	9. 59	1.26	0.03	0. 00		131. 67
6 ⊟	9. 60	1, 13	0.03	0. 00		117.61
7 🖽	7.47	0.89	0.04	0. 00		118.96
8 🗏	6. 95	0.80	0.03	0. 00		114.77
9 日	7. 26	0.81	0.04	0.00		110. 95
10 🗐	7.32	0. 78	0.03	0.00		106.06
11日	6. 80	0. 87	0. 03	0. 00		128. 09
12日	6.85	0. 99	. 0.04	0. 01	,	143.71
13 🖽	9. 09	1,06	0.37	0.04		116, 48
14 🖽	8.14	1.05	0. 03	0.00		129. 66
15⊟	8. 37	1.14	0. 03	0.00		136. 10
16⊟	9, 91	1.35	0.04	0.01		136, 33
17 🗏	9. 21	1.24	0. 05	0. 01		134. 61
18日	9.49	1.34	0.39	0.06		141.41
19日	12.68	3.23	0. 17	0.04		255.00
20⊟	8. 20	1.15	0.04	0. 01		139. 92
21日	8.16	1.16	0.04	0. 01		142.33
22日	8. 32	1.41	0. 03	0.01		169. 10
23 ⊟	8. 13	1.24	0.04	0. 01		151. 93
24日	8, 79	1.47	0. 03	0. 01		167. 78
25 🗏	9. 52	1.73	0.17	0. 03		181. 27
26⊟	8. 91	1.56	0.04	0.01		175.33
27日	9. 60	1.57	0. 03	0.00		163. 27
28日	8. 63	1.41	0. 03	0.00		163.60
29日	8. 70	1,60	0, 04	0. 01		183, 72
30⊟	9.62	1.72	0.04	0. 01		178. 25
31日	12. 49	2.86	0. 19	0.04		228. 75
平均值	8, 63	1.30	0.08	0.01		146.74
最大值	12. 68	3. 23	0.39	0.06		255.00
最小值	6.37	0.72	0. 03	0.00		106.06
月排放总量		40. 38		0.37		4548.79

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 4月

打印时间:

监控点名称: 1号锅炉废气排放口

	I	烟尘			二氧化硫			氮氧化物			1000 1 465s V	流量月排放 	Ole Albania Like 2)	Subtract of the
mak distri	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放爆	流纖	氧含量	温度	湿度	
时间	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	干克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	备注
1 EL								74.71						
2 日														1
3 🗏			72.000										/	1
4 🗎														
5 🗏									onio m			On an annual section		1
6 日				V					"		-	***************************************		1
7 E				X III			100							
8 E			And the state of t	600										
9 🗏														停力
10日														1
11E														
12日														1
13E														
14E				inno razione con conserval.										
15 E														1
16日														1
17日	13, 42	17. 75	7, 73	29, 33	37, 71	16.62	102, 69	131, 42	60, 52	556135.93	10 11	26 77	0.70	
18El	4. 49	5. 29	7. 50	4, 89	5, 68	8. 15	71.74	79. 91	119.12	1656899.13	13.11	36.77	3.79	
19E	4.21	4. 73	7. 29	0.40	0.49	0. 69	95. 28		162, 91		10.68	44.18	6.11	
20日	4.42	4. 97	7. 69	0.39	0. 51	0.68	96.78	104, 69 108, 42	166, 61	1708807.06	10.28	46.13	5, 84	
21 E	4, 43	4.76	7. 58	0.39	0.34	0, 43	90.44			1721037.62	10.32	47, 50	6.00	
22 E	4, 52	4. 70					correra Kodia/modia/home	96, 86	153, 96	1695384.22	9.78	47. 22	6.81	
		Control of the Control	7.65	7.46	6.16	12.65	93, 96	98, 86	157.02	1671583, 33	9.51	46.55	6.53	
23日	4.36	5, 12	7.59	15.79	19.77	27. 04	97.84	114. 29	168, 99	1720351, 23	10.77	45.81	6.85	
24E	4.17	5.24	7. 07	6.10	7. 67	10.53	89. 89	113. 28	150.69	1671104.09	11.53	46, 92	7. 38	
25E	4.10	5.03	7.00	2.04	2.50	3.49	101.33	123, 11	171, 96	1694604.56	11.38	47. 22	7.13	
26E	4.18	4.71	7.18	1.97	2. 28	3. 23	110, 66	124.70	188, 26	1701008.65	10.60	46.85	7.24	
27 E	4.16	4, 66	7. 18	0.96	1.08	1.71	102.41	114.68	176, 22	1719227.98	10.54	47. 43	7.45	
28日	4.28	4.71	7.36	2.33	2.63	4.04	103.90	113. 29	178. 24	1714844, 80	10.30	47.97	7.95	
29日	4.51	4. 88	7.60	1, 85	2.03	3, 06	110.17	118, 66	184, 49	1674007.64	10.09	48, 23	8.66	
30日	4.46	4. 63	7.41	0.35	0, 36	0.64	121. 53	126.18	200.98	1655789, 43	9. 70	47.81	8.64	
P均值	4. 98	5, 80	7.42	5. 29	6. 37	6, 64	99. 19	112.02	160.00	1611484.69	10.61	46.18	6, 88	
股大值	13. 42	17. 75	7, 73	29, 33	37, 71	27.04	121, 53	131.42	200.98	1721037.62	13.11	48.23	8, 66	
最小值	4.10	4.63	7.00	0.26	0.34	0.43	71.74	79. 91	60. 52	556135, 93	9.51	36. 77	3.79	
排放总量	and the state of t		103.83	Germann Season Hills	Million Ambitration and the	92.96	na salamaterio marci,	Paramanocorres sour à	2239.97	22560785.67	ATTENDED TO STATE OF THE STATE	C. Charles White		

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 5月

监控点名称: 1号锅炉废气排放口

											注: 废气:	流量月排放	总量单位为	(立方米)
		烟尘			二氧化硫			氮氧化物		流量	氧含量	温度	湿度	
时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	OIG.MM.	本心自 JBL	an./x.	GIE/32	备注
113 773	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	JEF 4.72.
1 🗎	4.44	4. 47	7.40	2.53	2.53	4. 20	125. 28	126. 12	207.49	1652594.56	9.12	47.94	8.84	
2 日	4. 42	4.49	7.34	7.83	7. 94	13.01	115.83	117. 52	191. 53	1650376.96	9.18	47.92	8.62	
3 ⊟	4.36	4.47	5. 44	11.85	12, 17	8.83	115.55	117.71	140.66	1220819.40	9.20	48.06	8.60	
4日	4. 47	4, 52	4.66	3.01	3.13	2.01	109.11	110.12	106, 51	993356.07	9.11	48.51	8, 98	
5 日	4. 48	4.61	4. 29	2.60	2.79	3,56	113.77	116.55	99. 31	905567.24	9.31	48.44	8.88	
6 ⊟	4, 30	4.41	4. 65	0.19	0.19	0.24	123, 22	125.63	123.90	1036032.62	9. 23	48, 07	8.41	
7 B	4. 36	4.43	5.70	0.20	0.20	0. 28	112. 19	113.38	132.70	1269646.75	9. 17	48. 24	8.34	
8 🖽	4. 41	4. 29	5.62	10.22	9, 93	12. 39	110.17	107.28	136. 45	1225845.26	8. 67	48. 42	8, 70	
9 日	4.50	4.30	5. 95	31.56	26.35	40.86	102, 26	97.02	122. 56	1274134. 26	8. 28	48.37	8. 82	
10日	4, 49	4.19	7. 28	0.97	0.99	1.58	107.83	99. 90	173.52	1602243.14	8. 07	46.83	8. 91	
11日	4. 52	4. 22	7. 20	1.22	1.30	2.02	101.19	92.87	161. 29	1576169.40	7.94	49.03	9. 68	
12日	4. 42	4. 15	7. 10	1, 54	1.49	2.41	98. 08	91.18	156. 22	1586883.08	8. 13	47. 93	8.84	
13日	4. 29		6, 96	3.30		5. 32	132.00		213.11	1616364.54	11.86	40.66	8. 21	折算异
14日	4.38		6. 92	3.56		5.60	114.11		179.80	1575857.46	13.40	36.89	8. 75	常
15日	4. 59	4.54	7.49	1.29	1.37	2. 22	95. 31	93. 41	154.62	1618541.99	8. 78	48. 92	9. 25	
16日	4, 67	4.62	7. 53	4.14	4.18	6,70	94.88	93.00	152. 53	1599405.76	8. 73	49, 39	9.48	
17日	4.69	4, 57	7. 10	5.13	5, 03	7.69	86. 65	84.20	130. 78	1495255, 73	8, 65	49, 27	9. 31	
18日	4, 64	4.37	4. 59	7.55	7.13	8. 07	96. 62	90. 17	88. 81	948783.61	8. 20	49.86	9. 91	
19日	4. 52	4. 26	3.73	5.65	5.30	4.88	105.50	98. 27	87.16	801905.65	8. 15	48. 40	8. 27	
20日	4.41	4. 23	4. 92	0.97	0.97	1.01	112.39	106.58	120.36	1075574.84	8.38	48.12	8, 10	
21日	4.51	4. 25	5.04	2.34	2.25	1.71	125.41	116.91	135.74	1075381.26	8.17	48.70	8. 65	
22日	4. 53	4.35	4.80	8.37	6.76	10.50	108. 23	102.66	108.02	1006792.92	8.30	48.72	8. 98	
23日	4.52	4.48	4. 26	7.31	7.34	6.89	99. 53	97.67	90, 23	893146. 33	8. 82	48.73	9. 08	
24日	4.52	4. 29	5. 02	8.80	8.30	10.00	107.55	100.99	117.44	1060284.16	8. 21	49.14	9.48	
25日	4.62	4. 41	4. 25	9.41	8.84	8.01	95. 94	90.41	86.01	883683.60	8. 25	49.89	9.68	
26日	4. 75	4. 48	5.03	9.71	9.10	10.55	91. 91	85. 55	88. 32	1013396.45	8.13	49. 91	9. 96	
27日	4. 44	4.20	4. 83	7.01	6.53	7.58	116.14	108.41	123.45	1041892.03	8. 12	48, 53	8. 47	
28日	4. 43	4.32	4.39	4.85	4. 56	4. 20	112, 76	107.68	109.84	953826. 58	8.32	48. 98	8. 53	
29日	4. 49	4. 25	5.91	7.14	5.42	5.03	112.72	104.01	144.44	1275305.11	7.93	49.19	8. 92	
30日	4.59	4.40	7.45	8.19	7.79	13.20	100.60	95.67	162. 58	1613837.28	8. 35	49.51	9. 10	
31日	4.57	4. 33	7. 45	7.67	7.13	12.34	99. 97	93.48	161.27	1610032.74	8.14	49.75	8.83	
平均值	4. 49	4.38	5.82	6.00	5.76	7.19	107. 83	102. 91	135. 70	1262997.96	8.78	48.07	8.92	
最大值	4.75	4. 62	7, 53	31.56	26. 35	40.86	132.00	126, 12	213.11	1652594.56	13.40	49. 91	9. 96	
最小值	4. 29	4. 15	3, 73	0.19	0.19	0.24	86. 65	84. 20	86. 01	801905.65	7.93	36. 89	8. 10	
月排放总量			180.31			222.89			4206.64	39152936.78				

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 6月

监控点名称: 1号锅炉废气排放口

				r							<u>注: 废气</u>	流量月排放	总量单位为	(立方米)
		烟尘			二氧化硫			奥氧化物		流量	氧含量	温度	湿度	
时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	-01C-188E	平公日加	4001./3E.	OE/SE	备注
tal Ca	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	W.C.
1 日	4.69	4. 34	7.44	8, 98	8.14	14. 12	84. 95	77. 25	134.00	1573363.81	7.77	49.53	9.02	
2 日	4, 67	4.40	7.58	8,76	8.18	14.10	91. 35	84.75	147.13	1610088.35	8.05	49.36	8. 79	
3 ⊟	4.57	4.38	7.45	9.08	8.54	14.63	94. 55	89, 08	153.04	1607625.62	8.23	48. 98	8, 68	
4 🗉	4.64	4. 35	7.53	9.28	8.68	14.96	94. 52	87. 75	152.40	1606256. 28	8.13	49.69	9.14	
5 日	4.51	4.04	7. 13	12. 26	9.76	19.09	97. 17	84. 88	152. 19	1566406.65	7.41	49.45	9.39	
6 ⊟	4.56	4, 31	7.02	8.47	7. 78	13.01	95.64	88.56	145.63	1525358.74	8.11	47. 93	9.70	
7日	4. 81	4. 47	7, 91	9.32	9.03	15. 45	97. 27	92.08	159.83	1641077.30	7.81	50.01	10.54	
8 日	4. 68	4.31	7.81	10. 23	9.24	17.09	101.72	91. 95	168. 24	1647565.28	7.81	48.78	9.54	
9 日	4.70	4.24	7.43	10.37	9. 28	16. 26	105. 23	93. 96	165. 11	1570951.82	7.76	49.63	10.42	
10日	4. 58	4.07	7.22	10.30	9.14	16. 16	115.01	101.86	180.73	1566325, 85	7.75	50.00	9.84	
118	4. 58	4.06	7. 19	10. 41	9. 22	16. 28	113. 22	99. 72	176.44	1555534. 95	7.66	50.29	10.08	
12⊟	4. 48	5.07	7.11	40.07	15. 31	63.30	99. 30	96. 41	156.60	1577887.25	7.98	50.66	9.18	
13⊟	4.64	4.07	7.32	0, 45	0.40	0.74	106.83	92. 80	167. 22	1560656.84	7.29	50.50	10.13	
14日	4.64	4, 20	7.35	5.14	4.75	8. 26	106.35	95. 65	167.70	1575544.04	7.71	50. 43	10.07	
15日	4.63	4. 25	7.36	3.16	2. 90	5.08	107.80	98. 46	170.14	1576525.27	7.88	50.70	10. 23	
16⊟	4. 57	4.08	7. 23	2.49	2. 21	3, 95	108.80	97. 05	170. 28	1557959.53	7.54	50.04	9.81	
17日	4. 60	4.15	7.54	2.10	1.88	3.05	102.03	92. 01	165.33	1628444.64	7.73	50.40	9.92	
18⊟	4. 71	4.11	6.37	4, 13	3, 54	5. 59	103.85	90. 25	140.45	1352432.40	7.24	50.88	10.40	
19⊟	4.65	4.01	6.28	7.95	5.86	10.76	104. 92	89. 91	141.90	1352432.40	6.93	50.18	10. 46	
20⊟	4. 55	3, 95	6.15	0.53	0.46	0.72	112.63	97. 17	152.32	1352432.40	7.12	46.35	10. 22	
21日	4, 60	4.05	6.21	0.70	0.57	0.94	104. 13	91. 65	140.82	1352432.40	7, 33	47.90	10.40	
22∃	4, 73	4.14	6.40	1.84	1.61	2.49	99. 77	87.37	134. 93	1352432.40	7. 32	49.53	10.92	
23 ⊟	4.65	4.06	6. 29	1.00	0.87	1.35	107.09	93.19	144.83	1352432.40	7.24	49. 93	10. 28	
24⊟	4, 53	3.99	6.13	0.46	0.40	0.62	113.60	99. 97	153, 64	1352432.40	7.33	50.63	9.65	
25 🗏	4. 50	3.96	6.08	2.33	2.04	3, 15	114, 95	101.31	155.46	1352432.40	7.35	50. 29	9.21	
26⊟	4.50	4, 06	6, 08	7.91	6. 48	10.70	110.78	99. 59	149.83	1352432. 40	7.68	50. 51	8, 65	
27⊟	4. 52	4.01	7. 17	5. 91	5. 24	9.33	108.40	95.94	170. 44	1574938.13	7, 53	50.85	8.96	
28日	4.51	3.92	7.00	2.41	2. 07	3. 79	108. 10	93, 81	166. 59	1537671.19	7. 21	51.00	10. 22	
29日	4.70	4. 25	7, 17	6.76	6. 25	10.39	104. 56	94. 47	158. 82	1517520.59	7.68	50.77	10.82	
30⊟	4. 57	4. 09	7. 09	6.46	5. 75	10.11	115.69	103.04	179.06	1543342, 84	7,54	50.04	9, 89	
平均值	4.61	4.18	7, 00	6.98	5. 52	10. 85	104. 34	93.40	157. 37	1509764.55	7.60	49.84	9. 82	
最大值	4, 81	5, 07	7.91	40.07	15. 31	63.30	115.69	103.04	180, 73	1647565, 28	8. 23	51.00	10.92	
最小值	4.48	3.92	6. 08	0.45	0.40	0.62	84. 95	77. 25	134.00	1352432.40	6.93	46.35	8.65	
月排放总量			210.04			325.46			4721.09	45292936.57				

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 7月

监控点名称: 1号锅炉废气排放口

		烟尘			二氧化硫			氮氧化物		24c 808	Art Av. SIL	SHI offe	ARR offer	Contracting to Carrier III to Stock
时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氣含量	温度	湿度	备注
my let	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	一
1 日	4.54	4.13	7, 15	9. 29	8, 11	14.66	114.42	103.76	178.58	1553399. 43	7. 73	50, 51	9.63	
2 日	4, 57	5.04	7, 14	6.05	5, 16	9.43	118.53	107.96	184. 26	1553477.96	7.90	51, 27	9.76	
3 日	4.60	6.18	7.10	0.64	0.59	1.00	119, 27	111.23	184.35	1545659. 58	8.13	51.16	9.97	
4 日	4. 56	6.03	6, 98	0.44	0.41	0.66	123. 42	113.85	188.79	1529376.13	7.97	50.73	9, 71	
5 日	4.57	6,00	7.08	0,39	0.36	0.60	125. 42	115.93	195.09	1555807.91	8, 01	50.14	9.27	
6 日	4. 43	5.81	6.86	2.13	1.95	3, 36	126. 91	117. 13	197.19	1554217.51	8. 05	49. 78	9.18	
7日	4. 47	5.89	6.94	2, 40	2.21	3, 76	122.04	112.17	189, 90	1554551.14	7.95	50, 60	9.67	
8 E	4.40	5.76	6.88	1.41	1.29	2.23	119.77	109.87	187. 03	1561705, 93	7. 92	50, 95	9.40	
9 日	4. 44	5. 82	6.87	0.54	0.49	0.81	118.51	107. 95	183.39	1545640, 01	7.74	51.12	9, 87	
10日	4.36	5, 94	6.79	0.81	0.75	1, 26	122, 46	114.17	191.12	1559764. 25	8.13	51.65	11, 22	
11日	4. 43	6.17	6, 86	5, 22	4.92	8, 07	116, 15	110.34	180. 31	1550043, 56	8.34	51.53	11.16	
12日	4.44	5.98	6, 85	6.24	5.71	9, 65	115. 27	106, 25	178. 57	1547139.13	7.96	52.02	11.00	
13日	4.49	6.11	6, 86	4.60	4.25	7, 06	106. 22	98.98	162.93	1535689.55	8, 13	51.79	10.90	
14日	7, 54	41.32	10.77	2.37	28, 85	3, 15	101. 46	595, 66	148. 17	1446578.64	11, 66	35, 26	9, 17	设备故障。氣含量 导致数据折算界
15日	10.48	14.18	16.85	2.19	2.05	3, 56	118.03	110, 01	189, 96	1609451.96	8. 13	51.64	10,74	SE INASCESSIONES ANA
16日	11.40	15.77	18.82	0.54	0.51	0.90	119.19	112, 28	196.79	1651601.89	8. 22	51,60	11.46	
17日	11.70	16.41	19.40	0.46	0.44	0.75	123.09	116.41	204. 33	1660872, 35	8. 29	51.99	12.27	
18日	11.51	16.20	19.02	0.46	0.44	0.76	109.65	104, 21	181, 20	1652211.10	8.34	51, 76	12, 16	
19日	11.74	16, 37	19.40	0.50	0.47	0.81	119, 50	112, 38	197. 90	1653850, 53	8, 21	51, 99	12, 25	
20日	14, 49	19.53	24.00	0.44	0.40	0.75	126.64	114. 92	210.38	1661225, 79	7, 75	52, 38	12.10	
21日	15, 08	20, 49	24.73	0, 61	0.55	1,02	112, 52	102.75	184.87	1640844, 10	7.81	52, 26	12.36	
22日	17.89	24, 47	28, 61	0.88	0.79	1, 42	113, 11	101.61	180.73	1596522.31	7.66	53.02	14, 13	
23日	16.97	23.44	26, 53	8. 92	8.50	14.11	105.74	95.84	167.47	1588744.67	7, 51	52, 38	14.04	
24日	15, 60	20, 37	25. 90	8. 12	7.20	13.36	95, 96	85, 13	159, 33	1660594, 28	7.46	52, 96	11.38	
25日	16, 15	21.19	27.13	4.12	3, 71	6.87	90. 51	81.71	152.10	1679948, 35	7, 73	52, 72	10.40	
26日	16, 52	21, 29	28, 13	6, 71	6.00	11.40	95. 32	84, 77	162. 38	1703815, 58	7, 53	52.76	10, 25	
27日	16, 01	23.88	12.83	3.59	3.52	3, 04	68, 15	72.26	53, 64	783830, 53	14, 50	44. 91	7.67	
28日														
29日														(\$55°C)
30日														13.7
31日														
平均值	9, 31	13, 69	14.54	2.97	3.69	4.61	112.86	122, 95	177.44	1560613.49	8, 32	50.77	10.78	
最大值	17.89	41.32	28.61	9, 29	28, 85	14.66	126, 91	595, 66	210.38	1703815, 58	14.50	53, 02	14, 13	
最小值	4.36	4.13	6.79	0, 39	0.36	0.60	68, 15	72, 26	53. 64	783830, 53	7, 46	35. 26	7, 67	
月排放总量			392.48			124, 45			4790.76	42136564. 17				

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 7月

监控点名称: 2号锅炉废气排放口

		烟尘			二氧化硫			氮氧化物		NAC .895	dot -A 101	OFF MALE	369 ebr	
时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氧含量	温度	湿度	备注
11-3 (1-1)	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	WF 7.1:
1 日		33 2.33			STOELO PETT		03/2/14/2							
2 日														
3 E				, a		v								
4 日														
5 E				3 3										
6 El						- 1								
7 日														
8 El														
9 日														
10日														li .
11日														
12日														
13日														
14日														停产
15日				3										
16⊞	J J.													
17日														
18日						2								
19日														
20日														
21日											(I			
22日														1
23日														1
24⊟				i .										
25日									Ū.					
26日														1
27日									8					
28日	0, 40	0.51	1, 25	63, 53	74.49	59, 10	83, 25	96, 75	137.01	731282.36	10.85	52, 67	40, 30	
29日	0.48	0.59	0.57	44. 31	53, 47	48. 93	56. 22	67.63	62.08	1108764.07	11.16	51, 73	40.30	
30日	0.46	0.55	0, 51	50, 61	60, 23	56, 46	104, 43	123.99	118, 81	1121431.44	10.93	51, 87	40, 30	
31 H	0.54	0.64	0.67	21.78	25, 37	25. 05	114, 89	136, 98	136. 87	1164716. 43	11.06	51.87	40, 30	
平均值	0.47	0.57	1, 96	45, 06	53, 39	67, 37	89.70	106, 34	194, 53	807113.34	11.00	52, 04	40, 30	
最大值	0.54	0, 64	2, 40	63, 53	74, 49	74. 64	114, 89	136, 98	223, 92	1164716.43	11.16	52, 67	40, 30	
最小值	0.40	0, 51	0.51	21, 78	25. 37	25, 05	56, 22	67, 63	62.08	725500, 53	10, 85	51, 73	40.30	
排放总量			29, 40			1010, 58			2917.89	12106700, 16				

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年8月

监控点名称: 1号锅炉废气排放口

打印时间:

注:废气流量月排放总量单位为(立方米)

		烟尘			二氧化硫		E .	氮氧化物		Note and	Art As Be	NO obs	MH other	-
IDC 480 D-1 City	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氣含量	温度	湿度	Ar Nie
监控时间	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	各注
1 日														
2 日														
3 日														Š
4 El									a					
5 E														
6日														
7 日														停冲
8 日														
9 El														
10⊟														
11日														1
12日														1
13日														
14日	13. 93	19, 45	7.53	1.34	2.10	0.63	129.71	140.82	70.73	521687.74	17.48	33. 03	0.80	
15日	13, 43	17.38	25, 59	3, 96	3, 93	7, 46	121, 18	119, 31	230, 91	1906497, 18	8, 83	52, 14	0.80	
16日	17.72	23, 26	33, 66	3, 11	3, 15	5, 99	124. 29	124.63	235, 47	1895268, 00	8.94	51. 43	0.79	P
17日	14, 32	18. 31	27. 38	0.67	0.65	1. 30	135, 98	132, 81	259.96	1912047, 40	8, 72	51, 93	0, 80	
18日	14, 81	19, 14	28, 48	0, 92	0.90	1, 75	123, 40	122, 04	237. 19	1923632.68	8, 87	52, 21	0.80	
19日	15.40	20, 39	28, 80	4, 50	4, 45	8, 00	116, 92	115, 78	219.42	1871014.14	8, 78	52, 16	2, 73	
20日	15. 95	23, 59	27. 81	0.38	0.39	0.68	89. 62	90, 55	156. 62	1745175, 93	9.14	52, 52	10.88	
21日	14. 95	21.58	26, 22	2.34	2.32	4. 07	86, 82	86, 97	151.95	1752425, 97	9.05	52.70	9.89	
22日	16. 28	20, 53	28, 62	0.45	0.46	0, 83	89.76	92, 13	158, 42	1749771.92	9, 25	51, 77	10.35	
23日	18, 16	18, 34	31. 22	0, 39	0.40	0.74	94, 22	95, 00	162, 59	1727772.21	9, 13	52, 18	11. 93	
24日	16. 98	17.16	30, 11	0.38	0, 38	0.72	92.82	93.47	164, 30	1763532.70	9, 10	52, 00	8, 84	
25 El	16, 19	16, 24	28, 89	0, 35	0, 35	0.70	93, 75	93, 77	166, 88	1779285, 42	9, 04	52, 42	8, 81	
26日	16, 41	16, 68	29, 45	0.40	0, 41	0.79	88, 89	89, 93	158, 83	1787552, 61	9. 20	52, 33	8.70	
27日	17, 49	17.38	30, 18	0.34	0.34	0.62	93, 42	92, 61	162.05	1728238, 34	8. 92	52.13	11. 29	
28日	19,02	19.08	34. 15	7, 06	6, 93	12, 72	98, 11	98, 02	175.73	1778342, 74	8, 95	51.31	8.19	
29日	18, 16	18, 40	32, 29	9.81	9, 96	17, 18	98, 71	99, 73	174, 35	1760213.34	9, 14	51.05	9, 69	
30日	17. 49	17, 67	31. 01	9, 75	9, 79	17, 27	99, 25	99, 95	175, 77	1762919, 53	9. 10	51, 44	9.98	
31日	18.59	18.23	33. 17	9, 10	8.91	16, 23	107.24	104. 91	190.86	1779375.32	8.78	51.84	8.11	
平均值	16.40	19, 05	28, 59	3. 07	3.10	5. 43	104, 67	105.13	180, 67	1730264.07	9.47	50. 92	6, 85	
最大值	19. 02	23, 59	34, 15	9, 81	9, 96	17, 27	135, 98	140, 82	259. 96	1923632. 68	17. 48	52.70	11. 93	
最小值	13, 43	16.24	7, 53	0.34	0.34	0.62	86, 82	86. 97	70.73	521687.74	8.72	33. 03	0, 79	
目排放总量	101.40	4.341.42.4	514.56	371.37.4	27.07	97. 68	1000		3252, 03	31144753, 17		30.00	51.10	

污染源名称: 山西兰花科技创业股份有限公司化工分公司 监测时间: 2019年 8月 监控点名称: 2号锅炉废气排放口

打印时间:

注:废气流量月排放总量单位为(立方米)

		烟尘			二氧化硫			氮氧化物		Sec. 101.	Arr 6- 10	NET MA	ACC refer	
the exercise fact	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氧含量	温度	湿度	Ar 54
监控时间	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	备注
1日	0, 69	0.76	0.91	18.09	21.00	25.40	100.69	118, 32	132.87	1334459.60	11, 67	51.89	27.37	
2 日	0.79	0, 78	1.27	14.81	17. 82	22, 14	52. 19	66, 79	81.04	1557192.94	11.87	51.78	12.98	
3 日	0.43	0.58	0.52	25. 10	32. 25	29. 29	42.69	56.35	51.46	1171705.97	11.90	52.11	13, 51	
4 日	0.40	0.53	0.46	9, 49	12.20	14, 14	48. 07	62.41	52.79	1111718.98	11.81	52, 17	12, 93	
5 El	0.51	0, 68	0.52	4, 48	5, 93	3, 83	42, 94	56, 32	39.95	966476.12	11.93	52. 25	12.84	
6 日	0.53	0.71	0.38	2.89	3.80	1.87	28. 19	38.00	18.95	664621.95	11.96	52. 43	12, 92	
7 日	0.56	0.76	0.49	0.66	0.90	1, 17	25. 17	34, 63	25, 51	926385.05	11.70	50.12	12.90	
8 El	0.46	0.61	0.30	0.68	0.89	0.35	27.47	36, 29	17.32	707273, 35	11, 87	52, 03	12.57	
9 日	0.50	0.66	0.30	1, 55	2.03	0.76	26, 78	35. 13	14, 54	528261, 72	11.88	52, 44	13.39	
10日	0, 50	0, 67	0.41	0.33	0.44	0.30	23. 26	31, 15	20.15	890263, 40	11, 95	51.87	12. 99	
11日	0.56	0.74	0.60	0.33	0.43	0.42	21.31	28. 52	24, 12	1158432.39	11, 87	52.14	12. 93	
12日	0.53	0.68	0.42	0.30	0.39	0.26	24, 49	31.93	20, 77	851095, 46	11.78	52, 48	13, 13	
13 El	0, 55	0,71	0.39	2.09	2, 56	3, 47	34.04	42, 85	30, 80	752318, 54	11, 54	52, 64	14, 51	
14日	0, 50	1.25	0.31	3, 48	8.60	3, 54	41.33	56.91	31.15	672150, 50	12, 65	50, 88	16.69	
15日								8						
16日														1
17日														1
18日														1
19日														1
20日														1
21日			d g		E = 2									1
22日														1
23日														停沪
24日														2000
25 El			8					9						1
26日														1
27日						1								1
28日			1 3		1			()						1
29日														1
30日														1
31日								2						1
平均值	0.54	0.72	0.52	6, 02	7.80	7.64	38, 47	49.69	40.10	949454, 00	11.89	51.94	14, 40	
最大值	0.79	1, 25	1.27	25.10	32, 25	29, 29	100, 69	118, 32	132, 87	1557192.94	12.65	52, 64	27, 37	
最小值	0, 40	0, 53	0, 30	0.30	0.39	0, 26	21.31	28, 52	14, 54	528261.72	11.54	50, 12	12. 57	
]排放总量			7, 27			106, 95		3	561, 42	13292355, 96		0 0		

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 9月

监控点名称: 1号锅炉废气排放口

打印时间:

注。废气流量月排放总量单位为(立方米)

		烟尘			二氧化硫			氮氧化物		tak and		terr sales	tert site	
监控时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氧含量	温度	湿度	备注
班技巧 的 lei	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	亳克/立 方米	千克	立方米	百分比	摄氏度	百分比	命召
1日	18, 40	18, 45	33. 98	7.35	7.34	13, 58	96. 19	96.17	177.27	1844398, 20	9.05	51.76	5.74	
2 日	19.11	19, 04	35, 08	7.05	7, 04	12.90	104, 49	103.99	191. 27	1830237, 21	8.97	51, 83	6, 17	
3 日	18, 17	18.10	33. 18	11.05	9, 62	20.01	99. 51	98. 31	181.46	1810424.90	8.85	51, 35	6, 70	
4 日	18, 66	18. 42	33.96	10.15	9.89	18.44	95. 28	93.60	173.00	1809152, 74	8.83	51.41	6.98	
5 日	18.38	18. 22	33, 31	12.03	11.95	21, 71	94, 11	93. 13	170.28	1808744. 26	8.91	51, 49	7.39	
6 日	18, 66	18.50	33.40	11.84	11.71	21, 07	94. 33	93. 23	168, 63	1773897, 13	8.85	51.34	7, 91	
7 日	17.81	17.76	31.96	15.77	15.67	28, 19	93. 48	93. 03	167.33	1784071.16	8.96	51.70	8. 13	
8 El	18, 04	18.04	32.31	13.93	13.92	24.77	97, 78	97.77	174.58	1785849. 58	9.04	52, 13	8.48	
9 日	17, 48	17.85	31.54	4.05	4, 09	7.32	94. 61	96. 41	170.42	1794681.90	9.23	51, 90	8, 44	
10日	17.08	16, 87	30.84	8.08	6, 65	14, 49	96. 84	93. 88	174.31	1801182.57	8, 83	52.62	8, 80	
11日	17. 29	17. 39	29.64	13, 16	12.99	23, 53	92.96	93.11	160.64	1703389. 91	9.05	51.70	8.30	
12日	16, 77	17, 12	23. 27	1, 76	1, 75	2.47	84, 79	86, 54	117.66	1378404, 12	9. 22	52.44	8, 85	
13日	16, 36	16. 46	22.81	11.13	11.04	15.03	95, 05	95. 36	131.78	1389341.38	9.08	52, 25	8, 83	
14日	16.63	16, 27	23. 25	17.93	17. 36	24. 83	95, 26	92, 92	132, 97	1392053, 27	8.74	52, 33	8, 85	
15日	16, 88	16, 33	22.75	11.56	11.13	15, 67	93, 98	90.71	125, 91	1333359, 79	8. 56	51. 91	8.72	
16日	17, 52	16, 87	25, 10	18, 43	17, 72	26, 19	94, 63	91.05	135, 36	1429777.15	8, 56	51.90	8.84	
17日	18. 55	17, 60	24. 98	15, 24	14. 33	20.41	101, 22	95, 72	135. 74	1336745, 54	8. 33	52. 59	9.17	
18⊟	14.64	14. 39	19.46	9.04	8, 86	12.52	93, 23	91.42	123, 36	1321384.82	8, 80	52. 16	8. 92	
19日	13.56	12. 93	20, 87	12.36	10.63	16, 54	97, 58	91.96	150. 91	1524662.73	8, 33	51.00	8, 93	
20日	13.04	12.81	22.57	3.06	3, 15	5.35	95.01	93.12	164.02	1714849, 42	8.75	49. 83	8.70	
21日	12, 91	13, 14	22.79	1.89	2.06	3, 31	91.34	93, 58	160.61	1760118.19	9. 22	50.01	8.70	
22日	12, 82	12, 88	23. 21	4, 86	4.80	8, 81	103, 19	102, 42	186, 43	1806304, 20	8.70	47.93	8.39	
23日	12, 50	12.87	22.67	7.26	7, 47	13.18	96, 80	99, 44	174.90	1798298, 54	9. 33	49.79	8, 67	
24日	12.35	12, 71	22, 40	15, 55	13, 78	27.60	98, 08	99, 84	177.45	1809698, 18	9, 25	49. 45	8, 41	
25日	11.16	11.71	9, 60	4, 82	5, 08	4.14	92, 97	97.52	79.30	857603.13	15, 63	38, 50	4.60	
26日														
27日														
28日														1957
29日														1000
30日														
平均值	16. 19	16, 11	26, 60	9.97	9, 60	16, 08	95.71	94, 97	156, 22	1623945. 20	9.16	50.85	8, 06	
最大值	19, 11	19.04	35, 08	18. 43	17, 72	28, 19	104, 49	103, 99	191, 27	1844398, 20	15. 63	52. 62	9.17	
最小值	11, 16	11,71	9, 60	1.76	1, 75	2.47	84, 79	86, 54	79.30	857603, 13	8, 33	38, 50	4,60	
月排放总量			664. 93		Adalasta	402, 05		331,33	3905.60	40598630, 02		201.54	41.163	

污染源名称:

山西兰花科技创业股份有限公司化工分公司

监控点名称: 1号锅炉废气排放口

监测时		2019年 1 烟尘	+7.4		— but (1) tota				打印时间:	T	7.E: 120	气流量月排	政學重學包	カリンカス
Th th a to	浓度	折算浓度	排放量	浓度	二氧化硫	排放量	实测浓度	無氧化物 折算浓度	排放量	流量	氧含量	温度	湿度	
监控时间	毫克/立 方米	毫克/立 方米	千克	毫克/立	毫克/立 方米	干克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	各注
1 H	74715	72.715		74715	1		JA.	7374			75,921,565-508		100000000000000000000000000000000000000	
2 El												2 Minut 58		-
3 ⊟														4
4 ⊞			, Admis											1
5 E			b										***	1
6 B														1
7 日														1
8日	8 8				37.5		- 53	"	2					1
9 El														1
10日									-				(HISTORY)	1
11⊟	5 5 5 5					·								1
12日		- N_/1		2					S. C.				-	停产
13⊟		18										1) - 12 - 11		(2012)
14日													-	1
15日			5											1
16日														1
17⊟														1
18日														1
19日			1/5										-	1
20日				V					- 25					1
21E													<u> </u>	1
22日														1
23日	9.82	14.81	2.41	0.11	0,13	0.03	301.77	467. 91	73, 29	241255.98	18.97	15, 40	0.51	
24日	3.64	4. 28	6.74	0.11	0.13	0.26	109.69	128. 14	201.61	1845984, 87	10.76	40, 23	4.00	1
25日	5.38	6.03	7.90	0, 25	0.27	0.37	121.72	136.33	177.34	1456717.81	10.31	41. 23	4. 40	1
26日	6.10	7.00	9.40	2. 23	2.57	3, 44	111.91	128.44	170.79	1525571.87	10.56	41.80	4. 63	未季度日
27日	6. 52	7.19	9, 71	4, 43	4.90	6.63	107.12	118.74	158, 17	1466218, 39	10.11	44. 08	5, 58	对对
28日	7.07	7, 77	10.45	3, 10	3, 40	4.65	112, 22	123, 34	164, 26	1463154.99	10.12	45. 79	6, 15	1 ~
29日	7.26	7.92	10.60	5. 53	6. 03	8. 07	113.80	123. 92	164. 97	1448465.31	10.02	45, 59	6.06	1
30日	8, 03	8.61	11.87	4.31	4, 63	6, 43	110.20	118.00	162. 91	1473214.20	9.79	46, 18	6.40	1
平均值	6.73	7.95	8.64	2.51	2.76	3.73	136.05	168.10	159.17	1365072.93	11.33	40, 04	4.71	
最大值	9.82	14. 81	11.87	5.53	6.03	8. 07	301.77	467.91	201, 61	1845984. 87	18. 97	46, 18	6, 40	
最小值	3.64	4. 28	2.41	0.11	0.13	0.03	107.12	118.00	73. 29	241255. 98	9.79	15. 40	0.51	
排放总量	§		69.08	di - dine T _{in} e 9	22.200	29.88			1273.34		W. 1.V	40. 10	0.01	

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监测时间: 2019年 12月

监控点名称: 1号锅炉废气排放口

		烟尘			二氧化硫			氮氧化物					放总量单位	23000111
监控时间	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氧含量	温度	湿度	100
5.000 SEP 5.515/0/	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	各注
1日	7.95	8.63	12, 46	7.58	8.18	12.01	118.96	128, 70	184. 56	1534884.93	9.83	45, 45	6, 24	
2 日	7.37	8, 01	11.53	2.84	3. 12	4.65	118.35	128, 60	183, 67	1547079.51	9.95	45, 44	6.14	未季度
3 日	6.76	10.42	4, 76	3.72	8, 55	2.43	119.30	164. 76	88. 63	691793.81	15, 79	34. 14	3, 61	对对
4 日	13.81	29. 16	1.47	3.11	5.60	0.34	89, 61	130. 23	10.19	110782.31	19.88	20. 11	1.53	1 22
5日						lellum de ille		-01/2					11.00	
6 日										1977				1
7日														1
8 日						i								1
9 日			J											1
10日				ii -										i
11日								- 55					-	1
12日														1
13日														1
14日			-41			Tografia e						-		f
15⊟											ST 15. 15			1
16日			7/21-											1
17日										100				1
18日														停产
19∃														127
20日		1,711												ł
21日									111.					f
22日														1
23日												_		1
24日														
25日														
26日					7 - 110 - 1									1
27日													-	
28日														
29日														-
30日													-	
31日														
平均值	8. 97	14, 05	7.55	4.31	6.36	4.86	111.55	138. 07	116.76	971135, 14	13.86	36, 29	4. 38	
最大值	13, 81	29, 16	12, 46	7.58	8. 55	12.01	119.30	164.76	184. 56	1547079.51	19.88	45, 45		
最小值	6.76	8, 01	1.47	2.84	3. 12	0, 34	89.61	128. 60	10, 19	110782.31	9, 83		6. 24	
排放总量	- 31-3	20.74	30. 22		V1 44	19.43	00.01	160.00	467. 05		5,00	20.11	1,53	

污染源名称: 山西兰花科技创业股份有限公司化工分公司

监控点名称: 2号锅炉废气排放口

监测时间: 2019年 12月

7Œ 2	发~	飞流	賦力	1 季胖	双总	進力	乳(立)	73	(X)	Ħ.	* ()
	\neg				I			Т				_

	I	烟尘		l	二氧化硫			氮氧化物					放总量单位	1
Ukr teks mit den	浓度	折算浓度	排放量	浓度	折算浓度	排放量	实测浓度	折算浓度	排放量	流量	氧含量	温度	湿度	47.33
监控时间	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	毫克/立 方米	毫克/立 方米	千克	立方米	百分比	摄氏度	百分比	备注
1 ⊟														/ale vite
2 ⊞														停产
3 ⊟	1.44	2.01	3.36	0.52	0.78	1.34	48. 21	69. 23	123.41	2542396.36	12.81	45.27	5.48	
4 ⊟	1.07	1.46	3, 96	1.29	1.74	4.84	54, 22	74.09	199, 87	3690123.89	12. 20	49.55	6.84]
5 ⊟	1.08	1.36	3.64	3, 93	5.00	13.74	62. 34	76. 92	206. 42	3344416.33	11.31	49. 84	7.32]
6 ⊟	1.03	1.19	3.25	0.68	0.78	2.12	62.06	71.16	194. 45	3157653.24	10.61	50.31	6.96]
7 ⊟	0.86	1.06	2.85	0.52	0.63	1.70	44. 46	53, 72	146, 69	3331049.56	11.11	49, 55	7.09	
8 ⊟	0.81	1.01	2.81	0.47	0.58	1, 62	34. 45	42. 81	118.51	3433684.77	11.31	49.31	6.84]
9 ⊟	0.66	0.79	2.30	0.49	0.58	1.69	40. 41	48, 65	141. 18	3493852.00	11.03	49.68	7.45	
10∃	0.82	1.07	2.90	0.52	0.70	1.80	58. 21	69.34	201.81	3468392.57	10.86	49.42	6, 83	
11日	0.75	0.94	2.71	0.55	0.69	2.00	61.19	76.19	217.98	3560163.93	11.36	49.38	6. 98	
12日	0, 83	1.05	2.94	0.56	0.70	1.94	56. 24	70.76	196.51	3500029.47	11.45	49.38	7.07	
13 ⊟	0.63	0.79	2, 28	0.54	0.69	1. 97	45. 44	57.71	163, 76	3610244.44	11.55	50.07	7.41	
14∃	0.85	1.05	3.00	0, 53	0.66	1.90	51.07	62, 96	179. 75	3517069.44	11. 28	50.00	6.84]
15 ⊞	0.92	1.12	3.23	0.54	0, 66	1.89	50.80	61, 89	178, 13	3363085.92	10.66	48.03	6. 63	
16 🗄	1.16	1.43	4.12	0.96	1.19	3.41	51.07	62.90	180. 75	3542886. 18	11. 26	49.86	6.70	锅炉未验
17日	1.05	1.29	3.66	0.56	0.70	2.00	57, 75	71.39	204.05	3534004.61	11.29	50.03	7.39	收,数据
18∃	1.23	1.61	4.09	0.72	1.17	2.42	60.96	74. 26	203. 30	3331843, 82	11.01	49.60	11.36	仅供參考
19日	1.07	1.31	3, 46	0.57	0.70	1.86	56, 77	69, 58	182.88	3219779.68	11.18	50.04	15, 58]
20日	1.26	1.52	4.06	0.52	0.63	1.70	60. 24	72.39	193. 99	3223310.60	11, 03	50.08	14.69]
21日	1.33	1.56	4.20	0.54	0.63	1.70	59. 62	70.10	189.68	3177786.20	10.79	50,05	14.53]
22日	1.44	1.67	4.64	1.13	1,31	3.68	60. 57	70.53	194.08	3204257.54	10.69	50, 25	14. 98	1
23日	1.35	1.60	4.27	0.54	0.64	1, 73	59.47	70.89	186, 87	3143603.95	10.92	49.93	13.71	1
24⊟	1.85	2.12	5.72	0, 53	0.60	1.63	59. 95	68. 27	184. 23	3073514.87	10.48	50.73	14. 26	1
25 ⊟	1.34	1.54	4.18	0.58	0.66	1.79	57. 99	66.50	180, 35	3110079.60	10.41	50.98	14, 65]
26日	2.37	2.73	7.44	0.54	0.63	1, 68	57.96	66.89	181.60	3133049.06	10.60	49.93	11.55]
27 ⊟	1. 17	1.36	3.77	0.54	0.63	1.74	60, 74	70.95	193.81	3197005.73	10.74	50.43	14.82]
28 🗏	0. 99	1.13	3, 14	0, 58	0.66	1.84	60. 55	68, 79	189. 99	3137598.19	10.41	50, 29	15.43]
29 ⊟	0. 90	1.03	2.91	0.61	0.70	1.96	57.35	65.86	183.70	3201458.72	10.55	50. 25	15.40	1
30 ⊟	1.54	1.77	5.06	0.60	0.69	1.96	60.75	69.70	196. 97	3241483, 41	10.55	50. 21	12.81]
31 ⊟	2. 13	2.53	6.68	0.69	0.82	2, 19	60. 94	72. 98	191, 33	3140513.47	10.87	49.03	11.44	1
平均值	1.17	1.42	3.81	0.74	0.92	2.48	55.58	67.15	182. 97	3297390. 95	11.05	49.71	10.31	
最大值	2.37	2,73	7.44	3.93	5.00	13. 74	62.34	76. 92	217. 98	3690123.89	12.81	50, 98	15. 58	
最小值	0.63	0.79	2. 28	0.47	0, 58	1.34	34. 45	42.81	118. 51	2542396, 36	10.41	45. 27	5. 48	
月排放总量			110.63			71.84			5306.04	95624337.55				

附件六:建设项目环境影响评价批复文件

山 西省环境保护病

关于《山西兰花科创股份有限责任公司 化工分公司 13 万吨/年尿素技术改造工程 环境影响报告书》的批复

山西兰花科技创业股份有限公司化工分公司:

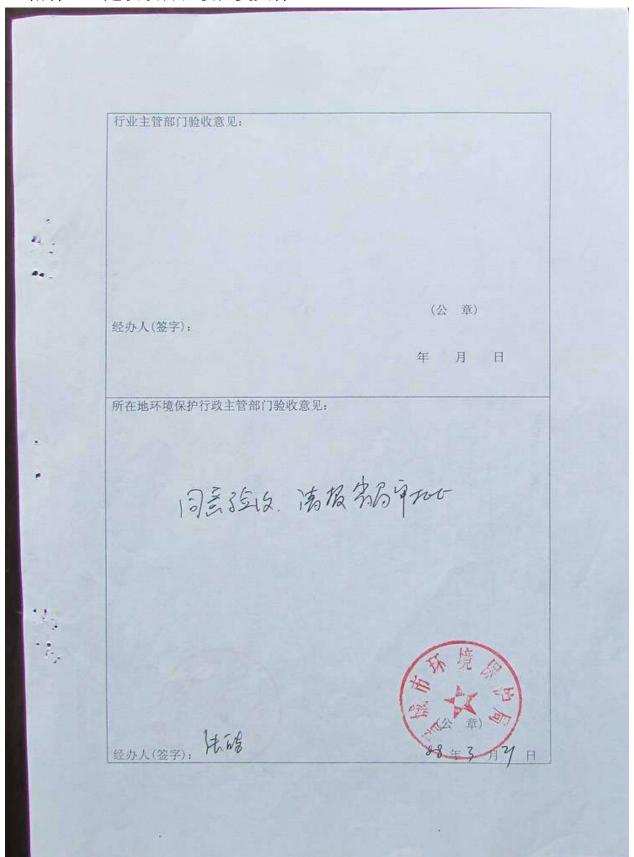
你公司报送的《山西兰花科创股份有限责任公司化工分公司 13 万吨/年尿素工程环境影响报告书(修改本)》(以下简称《报告书》)和山西省环境保护技术评估中心对《报告书》的评估意见、晋城市环保局对《报告书》的审查意见收悉。根据建设项目环境保护管理有关规定,经研究,现对《报告书》批复如下:

- 一、原则同意山西省环境保护技术评估中心对《报告书》的评估意 见和晋城市环保局对《报告书》的审查意见。
- 二、你公司在淘汰碳铵生产装置、技改扩建合成氨(由 4.5 万吨/年提高到 8 万吨/年)基础上,原拟建 2 万吨/年甲醇、1 万吨/年脲醛胶项目,我局以晋环函(2003)228 号文对该项目环境影响报告书进行了批复。现你公司拟调整项目建设内容,不建甲醇和脲醛胶项目,改为建设 13 万吨/年尿素项目,污染物排放量较原项目减少。在严格落实《报告书》规定的各项环境保护对策措施的前提下,本项目建成后可以做到污染物达标排放,并满足晋城市环保局下达的污染物总量控制指标要求。从环境保护角度,我局同意本项目调整建设内容,同意 13 万吨/年尿素技改项目实施建设。

- 三、在本项目的设计和建设中,要按《报告书》的规定逐一落实各项环境保护对策措施,特别要做好以下工作:
- 1. 现有和新增锅炉均要采用炉内加钙脱硫、烟气四电场静电除尘措施,除尘、脱硫效率要达到《报告书》规定的指标要求,确保外排烟气达到《锅炉大气污染物排放标准》(GB13271-2001)表1、表2II时段要求。
- 2. 淘汰现有造气装置;增加造气吹风气回收装置(并配套相应的除尘措施),氨罐驰放气、合成放空气、尿素工艺尾气等废气排放源要按《报告书》要求进行回收、净化处理。
- 3. 造气废水要采用沉淀、冷却、曝气、澄清处理后尽可以回用。 为确保全厂废水达标排放,我局要求建生化处理站(采用 A/0 工艺)处 理造气废水循环排污水、生活化验废水、设备和地坪冲洗水等废水,处 理能力要有足够的容量,处理后的废水用于循环系统补充水。在设计中 要进一步完善处理工艺。
- 4. 尿素解析水和氨氢回收排污水要采用深度水解技术回收处理, 处理能力要达到 40m³/h 以上。
- 5. 严格落实《报告书》规定的非正常工况和事故情况下的污染防治对策措施。
- 6. 按《报告书》要求合理、妥善处置造气炉渣、废催化剂、锅炉排灰渣、硫泡沫等固体废物; 煤场要采用全封闭措施; 加强厂内的绿化、 美化工作, 绿化系数应达到 30%以上。
- 7. 按《报告书》的规定制定环境保护管理制度,加强污染源监控能力建设,规范排污口建设和管理,厂废水总排、锅炉烟囱等主要源要

安装连续自动在线监测装置,监测仪器设备要满足本公司生产和环境管 理需要,并按《报告书》要求定期监测本公司污染物排放情况和周围主 要环境敏感点的环境质量,并向当地环保部门报告。

四、本项目建成后,全厂污染物排放应达到以下要求:废气污染物中,烟(粉)尘190吨/年,S0,121吨/年,NH,246吨/年;废水污染物中,废水排放总量35.5万吨/年(49.3吨/小时),其中氨氮20.83吨/年,C0D52.4吨/年,石油类0.55吨/年,氯化物0.081吨/年;未回收利用渣场填埋的固体废总量为26580吨/年。


五、本项目建成后经我局检查同意方可投入试生产,试生产期为三个月。试生产期内你公司要按国家有关规定,完成环境保护验收申报工作。

六、省环境监察总队、晋城市环保局、泽州县环保局要按各自职责 做好本项目施工建设阶段和现有生产的现场监督检查工作。

抄送: 省经贸委、省环境监察总队、晋城市环保局、泽州县环保局、省 环境保护技术评估中心、有关贷款银行、评价单位、设计单位

附件七: 建设项目验收批复文件

负责验收的环境保护行政主管部门意见:

环验[2008] 20 号

同意验收组意见。同意晋城市环保局意见。

该项目在建设中较好地执行了环境影响评价制度和 "三同时"制度,按照环评及其批复的要求建设了相应 的环保设施,经监测,主要污染物可做到达标排放并满 足总量控制指标要求。我局同意该项目通过竣工环境保 护验收。

建设单位应进一步加强各污染防治设施,尤其废水处理及回用设施的运行管理工作,保证各污染物稳定达标排放。同时,要加强事故风险防范意识,定期开展应急预案的演练工作,保证在任何事故状态下产生的废水、废气等均不对周围环境及居民带来污染影响。

晋城市环保局、泽州县环保局负责该项目的日常监督管理工作。

经办人(签字):

附件八:《突发环境事件应急预案》备案登记表

	企业事业单位突发环境事	件应急预	案备案表
单位名称	山西兰花科技创业股份有限公司化 工分公司	机构代码	91140500111200136Q
法定代表人	陈志伟	联系电话	0356-3892001
联系人	郭建光	联系电话	0356-3892251
传 真	0356-3892161	电子邮箱	lanhuakechuang@126.com
地址	山西省晋城市》 中心经度: E112°53'59.9		
预案名称	山西兰花科技创业股份有限公	令司化工分公司	突发环境事件应急预案
风险级别	重大[重大-大气(Q3-M	2-E1)+重大-水	(Q3-M2-E1)]
预案签署人	13:15 13	报送时间	140802000
且未隐瞒事实	预案制定单位: 1.突发环境事件应急预案各案表; 2.环境应急预案及编制说明;	山西兰花科技 报送时间	创业股份有限公司化工分公司 (公章)
突发环境 事件应急 预案备案 文件目录	环境应急预案(签署发布文件、环 编制说明(编制过程概述、重点内容 说明); 3.环境风险评估报告; 4.环境应急资源调查报告; 5.环境应急预案评审意见。		
备案意见	该单位的突发环境事件应急预案备案 全,予以备案。	备案	9月18日收选,文件
备案编号	1405252019072	4	
报送单位			
受理部门	12 .17	1/2 do 1	-1.1.

注:备案编号由企业所在地县级行政区划代码、年份、流水号、企业环境风险级别(一般 L、 较大 M、重大 H) 及跨区域(T)表征字母组成。

附件九: 化工分公司 2020 年自行监测方案 企业自行监测方案备案表

企业名称	山西兰花科技包	刘业股份有限:	公司化工分公司
企业地址	山西省晋城市泽州县巴公镇工 业园区	生产规模	8万吨/年合成氨、13万吨/年 尿素
法人代表	李晓明	行业类别	氮肥制造
统一社会 信用代码	911	405001112001	136Q
排污许可 证编号	91140	500111200136	5Q001P
申报单位	朱晓晔	固话	0356-3892251
联系人	朱晓晔	手机	13653565930
单位	根据《排污许可管理办法《 行监测方案》上报,请予备案。	(试行)的有差	关要求,现将我单位编制的《自
申请			(单位公章)
相		Vo	70年2月4日。
备			(3)
案	平以合	室	(1)
意	7- 3/ 110	7/	(单位公章)
见		76	2年2月4日

2020年自行监测方案

企业名称:

山西兰花科技创业股份有限公司化工分公司

编制时间:

2020 年 2 月 20日

目录

— 、	企业村	既况	. 1
	(-)	企业简介	. 1
	(=)	生产工艺简述	. 2
	(三)	污染物产生、治理和排放情况	. 3
	1,	废水方面	. 3
	2.	废气方面	. 5
	3.	噪声方面	6
	4,	固废方面	. 7
	5、	危废方面	. 7
	6.	企业实际建设与环评相比规模、生产及环保设施等的变更生	情
	况.		. 7
<u> </u>	企业	自行监测开展情况简介	. 8
	(-)	编制依据	. 8
	(=)	监测手段和开展方式	. 8
	(三)	在线自动监测情况	10
	(四)	企业实验室建设情况	11
三、	手工	监测内容1	12
	(-)	废气监测	12
	1.	废气监测内容	12
		废气监测点位示意图	
	3,	废气监测方法及使用仪器	17
	(=)	废水监测	18
		废水监测内容	
	2.	废水监测点位示意图	19
		废水监测方法及使用仪器2	
		厂界噪声监测	
	1,	厂界噪声监测内容2	22
	2.	监测点位示意图	22
	(四)	排污单位周边环境质量监测2	23

	1,	监测内容	23
	2.	监测点位示意图	24
	3,	监测方法及使用仪器	26
	(五)	手工监测质量保证	27
	1,	机构和人员要求:	27
	2.	监测分析方法要求:	27
	3,	仪器要求:	27
	4、	环境空气、废气监测要求:	27
	5、	水质监测分析要求:	27
	6.	噪声监测要求:	28
	7、	记录报告要求:	28
四、	自动	监测方案	28
	(-)	自动监测内容	28
	(二)	自动监测质量保证	29
	1,	运维要求	29
	2.	废气污染物自动监测要求:	29
	3,	废水污染物自动监测要求:	30
	4、	记录要求:	30
五、	执行	示准	30
<u>``</u> ,	委托	监测	34
七、	信息记	^{己录和报告}	35
	(-)	信息记录	35
	1,	手工监测的记录	35
	2.	自动监测运维记录	35
	3.	生产和污染治理设施运行状况	36
	4、	固体废物(危险废物)产生与处理状况	36
	(=)	信息报告	36
八、		监测信息公布	
	(-)	公布方式	36
		公布内容	
	(三)	公布时限	37

山西兰花科技创业股份有限公司化工分公司 自行监测及信息公开方案

按照《国家重点监控企业自行监测及信息公开实施细则》要求,结合我分公司实际情况,制定本自行监测方案如下:

一、企业概况

(一)企业简介

1、山西兰花科技创业股份有限公司化工分公司位于晋城市泽州县 巴公镇化工工业园区内,经度为112°53′36.78″,纬度为35°37′ 53.47″,占地面积约7.95万 m²,共有员工650人,其中大中专以上 学历人员454人占67%,各类专业技术人员占40%。我分公司属国有企 业,氮肥制造行业,主要污染物包括废水、废气、固废、危废、噪声 等。我分公司生产规模为13万吨/年尿素,实际生产能力与设计生产 能力一致,具体为年产8万吨合成氨,联产1万吨甲醇、13万吨尿素。

2、我分公司前身为巴公化肥厂,始建于 1965 年,是我省建厂历史最早的小氮肥企业,原设计为年产 5000 吨合成氨生产能力,1998年并入山西兰花科技创业股份有限公司。2004—2005 年我分公司实施了 13 万吨/年尿素技术改造项目,该项目由山西省经济贸易委员会以晋经贸投资备字 [2003] 第 105 号批准立项,山西省化工设计院于 2004年 5 月编制完成了该项目的环境影响评价报告书,山西省环境保护局于 2004年 6 月 22 日以晋环函 [2004] 249 号文对该项目的环境影响报告书进行了批复。项目生产能力为:合成氨 8 万吨/年,尿素 13 万吨/年,甲醇 1 万吨/年。山西省环境保护厅(原山西省环境保护局)于

2008年进行了验收。

2017—2019年我分公司实施了节能技术改造项目,该项目取得了晋城市经济和信息化委员会的备案文件,备案文号为[2017]46号和[2018]124号,此项目产能不发生变化;晋城市生态环境局以晋市环审[2018]39号对该项目的环境影响报告书进行了批复。

3、我分公司新版排污许可证编号: 91140500111200136Q001P, 有效期限: 2017年12月19日至2020年12月18日。

(二)生产工艺简述

化工分公司生产线主要包括: 1 套 8 万吨/年合成氨生成装置和 1 套 13 万吨/年尿素生成装置。具体工艺流程情况如下:

1、合成氨工艺流程:采用常压固定床间歇式煤气炉制取半水煤气,送至脱硫工段,将气体通过湿式栲胶法脱硫,溶液循环再生,脱硫后的半水煤气则通过压缩机一、二段加压至 0.8Mpa 送往变换工段。在催化剂的作用下,通过中-低-低变换,使半水煤气中的 CO 与水蒸气反应,生成 CO₂和 H₂,反应后的气体换热后送往压缩机三段。

由压缩机三段出来的 1.7Mpa 气体送至脱碳工段。经 MDEA 溶液吸收其中 CO₂气体后的净化气,送至压缩机四段。溶液则通过减压闪蒸、常解、加热再生,解吸出的 CO₂送至尿素工段作为尿素合成原料气。

净化气经压缩机四、五段加压至 13Mpa 后送至醇烃化工段,在醇化触媒的作用下使净化气中的 CO、CO₂与 H₂反应合成粗甲醇和水,精馏后送至成品槽。净化后的气体送烃化工序,使气体中残余的 CO、CO₂ 在烃化塔中,烃化触媒的作用下与 H₂反应生成烃化物,气体中残余的 CO、CO₂降至 10PPm 以下,送至压缩机六段,加压至 28Mpa 后送至合成

工段。

在合成触媒的作用下 H₂与 N₂反应生成 NH₃, 冷却分离后送至液氨贮槽。

2、尿素工艺流程:尿素采用水溶液全循环法工艺。来自脱碳的CO₂经压缩、净化与来自合成经过净化后的液氨,以及循环回收工序的一甲液一同经加压后送入尿素合成塔,在20.69MPa(绝),在180℃的条件下,经过足够的停留时间,约62%的CO₂转化成尿素,反应物经塔顶排出,进入预蒸馏塔,在此分离出闪蒸的气体后,溶液自流到中段蒸馏。蒸馏后的尿液进入一段分离加热器,在此88%的甲铵液分解,分离后的尿液进入加压二分塔、闪蒸塔,再经一段蒸发、二段蒸发、浓缩至99.7%的熔融液由尿液泵送往造粒塔造粒。

(三)污染物产生、治理和排放情况

我分公司污染物排放主要包括废水、废气、噪声、固体废物、危险废物等,具体产生、治理及排放状况如下:

1、废水方面

- (1) 我分公司总排废水中的污染物主要包括: PH 值、氨氮、COD、 悬浮物、石油类、挥发酚、氰化物、硫化物、总磷、总氮、F⁻。
 - (2) 企业废水处理设施建设情况见下表 1-1

表 1-1 全厂现有废水环保设施

酉	含的主体工程	环保设施(措施)名称	规格型号	数量
		沉淀池	25×5×5m	2
造 气	造气循环水	微涡流塔板澄清器	φ 22000×11000	1
		造气循环水池	$5\times5\times3$ m $5\times3\times3$ m	2 1
压		废油隔油池	$5\times2\times2$ m $2\times2\times2$ m $3\times2\times2$ m $4\times2\times2$ m $4\times2\times2$ m	1 1 1 1 1
压缩合	压缩、合成工段	废油回收	φ 800×12750	1
成		综合循环水	$12 \times 16 \times 1.2m$ $5 \times 4 \times 4m$	1 1
		高效纤维球过滤器	φ 2500×3000	1
甲醇	非正常排放	事故槽	750m³	1
	尿素循环回收	深度水解装置	φ 1500×36895	1
尿素	非正常排放	事故槽	100m³ 200m³ 1500m³	1 1 1
7.	日本紙工业	尿素循环水池	$25 \times 13 \times 2.5$ m	1
	尿素循环水	高效纤维球过滤器	φ 2500×3000	1
脱		高效纤维球过滤器	φ 3200×5150	1
碳	脱碳循环水	脱碳循环水	$11m \times 9m \times 5m$ $11m \times 11m \times 5m$	1 1
总		含氟废水治理装置	$50 \text{m}^3 / \text{h}$	1
排	总排废水	山西兰花煤化工有限责任公司 污水处理分公司	30000 吨/日	1

2、废气方面

- (1) 我分公司废气排放设施主要包括: 35T 锅炉、55T 三废炉、 甲醇 VOCs治理装置、尿素放空总管、造粒塔尾气、煤场筛分装置粉尘 回收装置。35T 锅炉、55T 三废炉烟气中主要污染物包括: 烟尘、SO₂、 NO_x; 甲醇 VOCs治理装置废气中主要污染物包括: 甲醇; 尿素放空总管 废气中主要污染物包括: 氨; 造粒塔尾气气中主要污染物包括: 氨和 颗粒物; 煤场筛分装置粉尘回收装置废气中主要污染物包括: 颗粒物。
 - (2) 企业废气处理设施建设情况见下表 1-2

表 1-2 全厂现有废气环保设施

序号	排放口编号	排放口名 称	排放口高度、出 口内径	排放污 染物类 型	污染治理设施 处理规模、主要 技术参数	对应的生 产装置	备注(连 续/间断 排放)	
1	DA015	尿素放空 管	φ 360×45000	00 NH ₃ φ 700×7360 S=24 m² F=35 m² 尿素系统		连续排放		
2	DA016	筛分机排 气筒	φ 600×15000 颗粒物 袋式除尘器 密闭煤场		间断排放			
3	DA017	造粒塔	11500×6000 74000	颗粒 物、NH ₃	回收箱 11500× 6000×6000	尿素系统	连续排放	
		55T/h 三 A018 废炉排放 口	φ 3200×50000	颗粒物	电袋除尘器		连续排放	
4	DA018			SO_2	脱硫塔 φ 6500*34500	55T/h 三废 炉	连续排放	
				NO_X	SNCR 脱硝+SCR+ 低氮燃烧		连续排放	
				颗粒物	三电场高压静 电除尘器		连续排放	
5	DA019	35T/h 锅 炉排放口	φ 1600×47000	SO_2	脱硫塔 φ 3828*23000	35T/h 锅炉 (备用)	连续排放	
				NO _X	SNCR 脱硝		连续排放	

序 号	排放口 编号	排放口名 称	排放口高度、出 口内径	排放污染物类型	污染治理设施 处理规模、主要 技术参数	对应的生 产装置	备注(连 续/间断 排放)
8	DA022	挥发性有 机物回收 治理废气 排放口	φ 400×15000	甲醇	水洗涤塔+活性 炭吸附装置	甲醇精馏、 储存及充 装系统	连续排放
9		半水煤气 脱硫液再 生尾气回 收装置		VOCs	处理能力 4800Nm³/h	半水煤气 脱硫装置	全部回收 至 55 T/h 三废炉
10		变硫尾换气收		VOCs	处理能力 2400Nm³/h	变换气脱 硫装置	全部回收 至 55T/h 三废炉
11		脱碳液闪 蒸气废气 回收治理 装置		VOCs	处理能力 2000Nm³/h	脱碳装置	全部回收 至 55T/h 三废炉
12		氢回收装 置		氢气	处理能力 2000Nm³/h	合成装置	全部回收 至 55 T/h 三废炉
13		等压回收 装置		氨气	处理能力 2000Nm³/h	氨贮槽	全部回收 至 55T/h 三废炉

3、噪声方面

企业噪声污染防治措施:针对具体情况,在 MD 机总放空管、H8 机总放空管、35T 锅炉鼓风机进口、55T 三废炉鼓风机进口、二氧化碳机总放空管、造气风机进口、变换放空管安装了消音器,在压缩工段、综合水泵房等不同岗位设置隔音室,对一脱管道上使用隔音棉材料并设置隔音墙,总共设有隔音设施 25 套,消音器 16 套,从而大大改善职工工作环境,保护了员工身体健康。

表 1-3 噪声污染来源及治理措施

类型	污染来源	污染物名称	主要(污染) 成分	治理措施及效果	最终排 放源
噪声	鼓引风 机、压缩 机、循环 机、液体 输送泵等	噪声	噪声	1、对大型风机安装消声器,加隔音室; 2、对操作人员设置隔音室并配置必要的 防护器材; 3、在造气风机、造气空气放空管、尿素 CO ₂ 压缩机放空管、锅炉鼓风机装设消音 器; 4、在新旧压缩厂房和尿素二氧化碳机厂 房设隔音间。	

4、固废方面

我分公司一般固废主要包括炉渣和粉煤灰。造气炉渣严格按照环评要求进行处置,70%用于循环流化床锅炉燃烧用,其余送山西兰花煤化工有限公司靳庄渣场填埋。2019年7月份我分公司新建一台55T/h三废炉,投运后可掺烧大部分造气炉渣,剩余少量无利用价值的炉渣送山西兰花煤化工有限公司靳庄渣场填埋,可达到造气炉渣的稳定综合利用。

5、危废方面

我分公司危险废物主要包括废油、废油桶和废催化剂。我分公司 严格按照相关环境保护法律、法规的要求,将危险废物提供给有危险 废物经营许可证的单位进行处置,处置时,到省厅、市局办理相关转 移手续;严格按照按照危险废物贮存污染控制标准,对危险废物贮存 场所进行了防流失、防渗漏和防雨改造,并设立了危险废物警示标志。

- 6、企业实际建设与环评相比规模、生产及环保设施等的变更情况
- (1) 我分公司实际建设与环评相比生产规模无变化。
- (2) 近三年来, 我分公司积极开展了各项环保治理工作, 环保设

施变化较大,新建环保设施主要有包括:

废水:含氟废水治理装置;

废气: 55T/h 三废炉配套除尘、脱硫、脱销装置、造气循环水沉 淀池封闭装置、半水煤气、变换气脱硫液再生尾气和变换气闪蒸气以 及脱碳工艺性 VOCs 回收治理装置、氢氮气压缩机及系统开停车时段放 空气体治理装置、甲醇精馏、储存及充装系统 VOCs 治理装置、煤场、 渣场全封闭;

固废: 造气循环水底泥压滤装置及半封闭暂存库。

(3)2019年8月22日我分公司完成了排污许可证中法人及新增环保设施等相关内容的变更工作。

二、企业自行监测开展情况简介

(一)编制依据

- 1、依据晋城市生态环境局《关于确定晋城市 2018 年重点监管排污单位名录的通知》,我分公司属于废水、废气重点排污单位;依据《固定污染源排许可分类管理名录》(2019 年版),我分公司属于重点管理单位。
- 2、自行监测方案依据:《排污许可单位自行监测技术指南》(HJ819-2017)和《排污许可证申请与核发技术规范化肥工业-氮肥》(HJ864.1-2017)。

(二)监测手段和开展方式

1、总排废水监测情况

我分公司总排废水需监测项目有13项,分别是:PH、氨氮、COD、

硫化物、悬浮物、流量、石油类、挥发酚、氰化物、总磷、总氮、F¯、水温。

手工监测项目:由分公司中心化验室对总排放口进行监测。监测项目主要有6项:PH、氨氮、COD、悬浮物、流量、水温。

自动监测项目 5 项: PH、氨氮、COD、流量、F、。

委托监测项目:委托山西高创环保检测有限公司监测项目 13 项,分别是 PH、氨氮、COD、硫化物、悬浮物、总磷、流量、石油类、挥发酚、氰化物、硫化物、总氮、F⁻。

2、废气监测情况

(1) 有组织排放监测

自动监测项目: 35T/h 锅炉、55T/h 三废炉烟气流量、烟尘、 SO_2 、 NO_x 、氧含量等。

委托监测项目:委托山西高创环保检测有限公司监测项目为 35T/h 锅炉、55T/h 三废炉烟气林格曼黑度、汞及化合物、非甲烷总烃等; 煤场筛分机粉尘回收装置烟囱废气的流量、颗粒物; 尿素放空总管废气的流量、氨含量; 造粒塔尾气的流量、氨和颗粒物的含量; 甲醇 VOC。治理装置放空管废气的流量和甲醇浓度。

(2) 无组织排放监测

自动监测项目: 我分公司煤场无组织排放点已设置 3 处,全部为自动在线监测。

委托监测项目: 我分公司厂界废气委托山西高创环保检测有限公司监测,监测项目 8 项: 非甲烷总烃、臭气浓度、硫化氢、氨、甲醇、酚类、苯并芘、颗粒物。

(3)环境空气质量监测

厂界环境空气质量监测项目为 PM2.5、PM10、SO₂、NO₂、O₃、CO, 全部为自动在线监测项目。

3、厂界噪声监测情况

我分公司厂界噪声全部委托山西高创环保检测有限公司监测。

(三)在线自动监测情况

我分公司自动在线监测设备如下表 2-1。

表 2-1 自动在线监测设备一栏表

序号	监测点位	监测项目	监测设备名 称、型号	设备厂家	是否 联网	是否 验收	运营商
1		流量	WL-1A1	北京九波	是	是	
2		PH 值	PC-3110	上泰仪器	是	是	
3	总排	COD	TOC-4100	日本岛津	是	是	
4		氨氮	TGH-SNS	中绿环保	是	是	
5		氟化物	FBM-160	山西格致海洋信 息科技有限公司	是	是	
6		颗粒物	TGH-YX		是	是	中绿环保科技股
7		二氧化硫	TGH-YX		是	是	份有限公司
8	1.4.4.4.1.	氮氧化物	TGH-YX		是	是	
9	1#排放口 (35T/h 锅炉)	流量	TGH-YX	中绿环保科技股 份有限公司	是	是	
10	- 物 <i>が</i> /	烟温	тсн-үх		是	是	
11		含氧量	TGH-YX		是	是	
12		含湿量	тсн-үх		是	是	

序号	监测点位	监测项目	监测设备名 称、型号	设备厂家	是否 联网	是否 验收	运营商	
13		颗粒物	PCME 181WS	上海华川	是	是		
14		二氧化硫	TGH-YX			是		
15	-	氮氧化物	TGH-YX		是	是		
16	2#排放口 (55T/h	流量	TGH-YX		是	是	中绿环保科技股	
18	三废炉)	烟温	TGH-YX	中绿环保科技股 份有限公司	是	是	份有限公司	
19	_	含氧量	TGH-YX	WHIKAN	是	是		
20		含湿量	TGH-YX	н–үх		是		
21		СО	TGH-YX		是	是		
22	JH 17.	2 台: HN-CK300 TSP 1 台: H6 <u>₹</u>		山西大疆环保科 技有限公司	是	是	山西大疆环保科	
23	沃沙			山西格致海洋信 息科技有限公司	是	是	技有限公司	
24		PM2. 5			是	是		
25		PM10			是	是		
26	1 /\ 1 *	S0 ₂	VIIAOMC2000	河北先河环保科	是	是	河北先河环保科	
27	- 办公楼	办公楼 0 ₃ XHAQMS3000	技股份有限公司	是	是	技股份有限公司		
28		NO ₂			是	是		
29		CO			是	是		

(四)企业实验室建设情况

为确保分公司水污染源监测工作扎实有效开展,由中心化验室专门对各污染源进行监测。

分公司中心化验室建有化验室检验和试验管理制度、化验室药品管理制度、计量仪器管理制度、毒品保管、使用、处理制度、易制毒化学品管理制度和废液处理规定等制度。分公司中心化验室配有 8 名自测工作人员,每天指定专人专门按时检测分公司各分排口和总排口

废水排放情况。

分公司环保科对负责日常监测工作进行监督管理。

为保证所采集样品的代表性,真实反映废水各污染源的状况,监测人员必须在规定时间、规定采样点位采集有效样品。如有客观条件限制不能按规定采样时,需征得相关负责人的同意,并在污水监测报表中予以说明。

中心化验室负责人: 梁海荣

联系电话: 13753688886

环保科负责人: 朱晓晔

联系电话: 13653565930

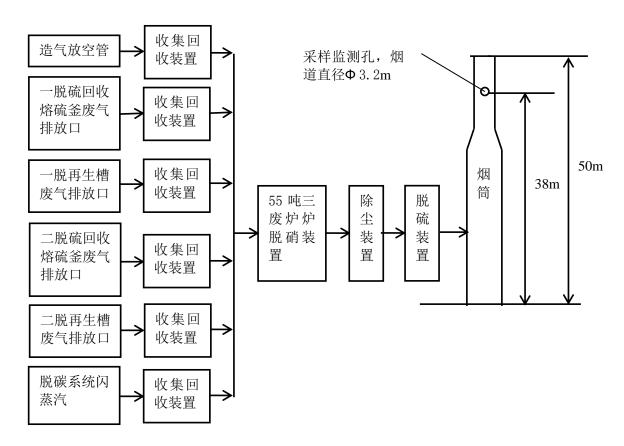
三、手工监测内容

(一)废气监测

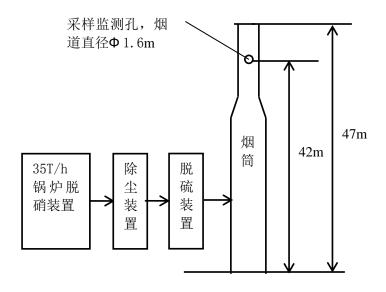
1、废气监测内容

开展方式为自行监测+委托监测。35T/h 锅炉、55T/三废炉废气自 行监测项目有: SO₂、烟尘、氮氧化物、流量等。委托监测项目有: 林 格曼黑度、非甲烷总烃、汞及化合物、臭气浓度等。

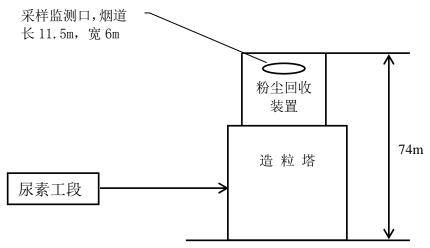
分公司按照环境监测技术规范和自动监控技术规范的要求在35T/h 锅炉、55T/三废炉烟筒上安装有烟气在线自动监测系统和中控系统,已与省环保厅、市环保局监控中心联网,并通过了验收。烟气自动在线监测装置适时监控烟筒二氧化硫、烟尘、氮氧化物、流量、温度氧含量等的排放情况。具体监测点位、监测项目及监测频次见表3-1。

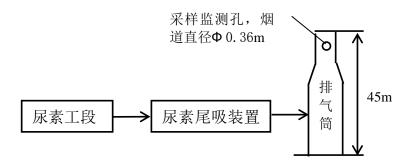

表 3-1 废气污染源监测内容一览表

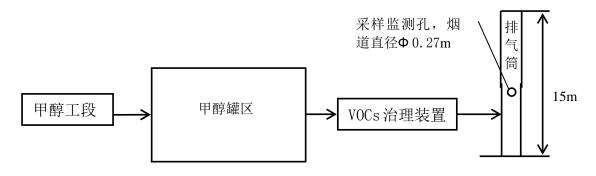
序 号	污染源 类型	排放口 编号	污染源名称	监测点位	监测项目	监测频次	样品 个数	测试要求	排放方 式和排 放去向	
1		DA015	尿素放空管	尿素放空 管上	氨气	1次/1季度				
2		DA016	筛分机排气 筒	布袋除尘 器烟囱上	颗粒物	1次/1半年				
3		DA017	造粒塔	造粒塔	氨气 颗粒物 臭气浓度	1次/1季度				
4	固定源	DA018	55T/h三废 炉	排气筒上	汞及其化合物、 林格曼黑度、非 甲烷总烃、臭气 浓度	1次/1季度		司步记录工 况、生产 负荷、烟	集中排放	
	废气			氮氧化物、二氧 化硫、颗粒物	1次/1小时		1 5 5 数 1 5 5 数	**		
5		DA019	DA 019	35T/h锅炉	排气筒上	汞及其化合物、 林格曼黑度	1次/1季度	每次 非连		
				411 412	氮氧化物、二氧 化硫、颗粒物	1次/1小时	续采 样至 少3			
6		DA022	甲醇罐区	甲醇VOCS 治理装置 烟囱	甲醇	1次/1季度	个			
7					非甲烷总烃					
8					臭气浓度	1次/1季度				
9					硫化氢	10人1子及				
10	无组织		厂界	厂区	氨			1个参照 点, 三个	厂区外	
11	废气		/ 215	/ <u>F</u>	甲醇			监测点	/ L/I	
12					酚类	1次/1年				
13					苯并芘	190/11				
14					颗粒物					

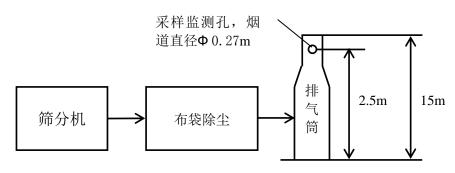

2、废气监测点位示意图

废气监测点位示意图如下图:


山西兰花科技创业股份有限公司化工分公司废气监测点位示意图 北 尿素成品堆放区 废气监测点 北煤场 氨罐区 CO2压缩机 事故池 尿素堆放区 尿素生产区 素包装 配电 机修原 事故 尿素造粒塔 甲醇灌区▲(4) 合成循环(销售站 降压站 合成联合生产区 凉水塔 甲醇 VOCs 35T 锅 新 鲜水池 供应科 8万吨变换 综合水泵房 醇 烃 粗醇槽区 III. 压缩 55T/h 三废炉 化装 综合循环水 脱盐水厂房 食 机修厂房 2#吹风气回收 纳 总控楼 旧厂房 堂 造气生产区 MD 压缩机厂房 米 微涡 间 环水系 压缩废水隔 流 办 油池 1#吹风气回收 公 脱碳生 澡 产区 废水 气柜 造气脱硫 造气凉水 池 X 机关办公 脱碳循环 废水池 脱硫凉水 水系 隔油 山西兰花华明纳米厂 原巴公电厂旧址


55T 三废炉排口监测点位示意图 1


35T/h 锅炉排口监测点位示意图 2


尿素造粒塔排口监测点位示意图 3

尿素放空管排放口监测点位示意图 4

VOCs 处理设施排放口监测点位示意图 5

煤场排放口监测点位示意 6

3、废气监测方法及使用仪器

废气污染物监测方法及使用仪器情况见表 3-2

表 3-2 废气污染物监测方法及使用仪器一览表

序号	监测 项目	采样方法及依据	样品 保存 方法	分析方法及依据	检出 限	仪器设备名称和 型号	备注
1	颗粒 物	НЈ-864. 1-2017		重量法 HJ836-2017	上限: 30mg/m³		
2	二氧 化硫	НЈ-864. 1-2017		定电位电解法 HJ57-2017	上限: 200mg/m³	烟气排放连续监 测系统	
3	氮氧化物	НЈ-864. 1-2017		定电位电解法 HJ693-2014	上限: 200mg/m³		
4	林格曼度	НЈ-864. 1-2017		固定污染源排放 烟气黑度的测定 林格曼烟气黑度 图法 HJ/T 398-2007	上限: 1级	林格曼烟气黑度 仪 NH-80A 型	55T/h 三废
5	汞及 其化 合物	НЈ-864. 1-2017		固定污染源废气 汞的测定 冷原子 吸收分光光度法 (暂行)HJ 543— 2009	0.0025mg/m ³	JLBG-201U 冷原 子吸收微分测汞 仪(GCHB-YQ-137)	一次 炉、 35T/h 锅炉
6	非甲 烷总 烃	НЈ-864. 1-2017		固定污染源排气 中非甲烷总烃的 测定 气相色谱法 HJ/T 38-1999	上限: 120 mg/m³	GC9790II 气象色 谱仪	
7	臭气浓度	НЈ-864. 1-2017		空气质量 恶臭的 测定 三点比较式 臭袋法	上限: 40000 无量纲	嗅觉器官	
8	氨气	НЈ-864. 1-2017		空气和废气 氨的 测定 纳氏试剂分 光光度法 HJ 533-2009	0.05 mg/m ³	SP-721E 可见分 光光度计 (GCHB-YQ-030)	尿素 放空 管、塔 粒塔
9	臭气 浓度	НЈ-864. 1-2017		空气质量 恶臭的 测定 三点比较式 臭袋法	上限: 60000 无量纲	嗅觉器官	造粒 塔
10	甲醇	НЈ-864. 1-2017		固定汚染源排气 中甲醇的测定 气 相色谱法 HJ-T33-1999	0.1 mg/m ³	GC9790II 气象色 谱仪	甲醇 VOCs回 收治 理装 置

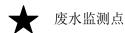
序号	监测项目	采样方法及依据	样品 保存 方法	分析方法及依据	检出 限	仪器设备名称和 型号	备注
11	非用烷烃	НЈ604-2017		直接进样-气相色 谱法 GC9790	0.07mg/m ³	GC9790II 气象色 谱仪	
12	臭气 浓度	GB/T14675-1993		三点比较式臭袋 法	上限: ≤20 无量纲	嗅觉器官	
13	硫化 氢	《空气和废气监测分析方法》(第四版)第三篇第一章十一(二)国家环保局2003年		亚甲基蓝分光光 度法	0.001mg/m ³	分光度计	
14	氨	НЈ-864. 1-2017		HJ533-2009《环境 空气和废气氨的 测定纳氏试剂分 光光度法》	0.05mg/m ³	明华 MH1200-A 多 功能恒温恒流大 气采样器 (GCHB-YQ-013~ 016) SP-721E 可见分 光光度计 (GCHB-YQ-030)	厂界
15	甲醇	НЈ-864. 1-2017		气相色谱法	0.1mg/m³	GC9790II 气象色 谱仪	
16	酚类	НЈ/Т32-1999		4-氨基安替比林 分光光度法	0.003mg/m ³	分光度计	
17	苯并 芘	НЈ-864. 1-2017		高效液相色谱法 GB/T-15439-1995	上限: ≤ 0.008ug/m³ 3	高效液相色谱仪	
18	颗粒 物	HJ-864. 1-2017		总悬浮颗粒物的 测定 重量法 GB/T15432-1995	0.010 mg/m ³	ME104E 电子天平 (GCHB-YQ-041)	

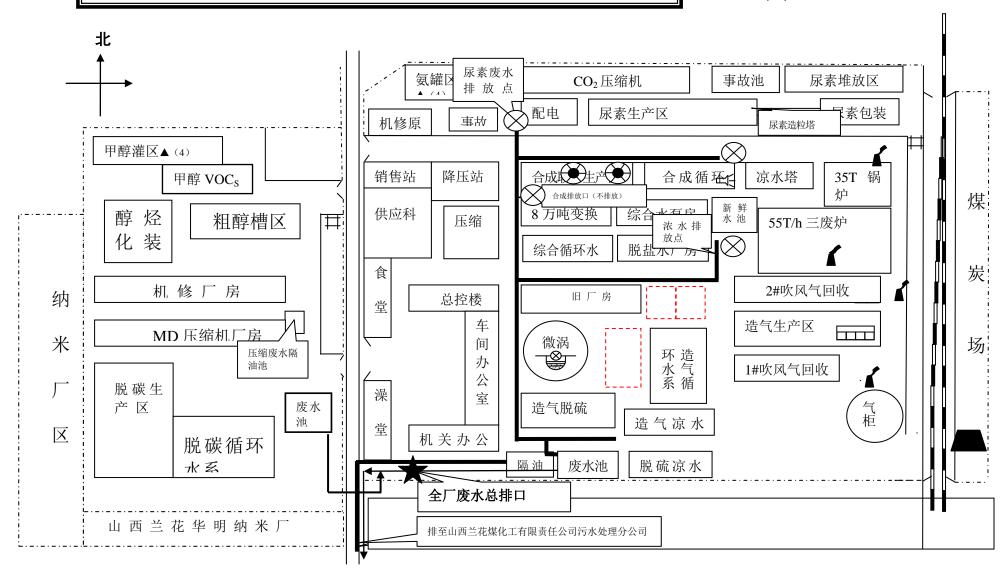
(二)废水监测

1、废水监测内容

废水取样点设在总排废水在线监测取样处, 监测点位、监测项目

及监测频次见表 4。为便于将手工监测与自动监测结果进行比对,每日1:00、8:00、10:00、12:00、14:00、16:00、17:30、20:00 各取样1次。监测点位、监测项目及监测频次见表 3-3。


表 3-3 废水污染源监测内容一览表


序号	排放口编号	监测点位	监测项目	监测频次	样品个数	排放方式和 排放去向				
1	DW001	废水总排口	РН	1次/4小时						
2	DW001	废水总排口	氨氮	1次/4小时						
3	DW001	废水总排口	COD	1次/4小时						
4	DW001	废水总排口	悬浮物	1 次/月						
5	DW001	废水总排口	总磷	1 次/月		所有外排废水 均经总排口由				
6	DW001	废水总排口	硫化物	1次/季		密闭管道送往 我公司所当此不可以不不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以不可以				
7	DW001	废水总排口	石油类	1 次/季	每次非连续采样 至少3个					
8	DW001	废水总排口	挥发酚	1次/季						
9	DW001	废水总排口	氰化物	1 次/季		理分公司进行 终端处理				
10	DW001	废水总排口	总氮	1 次/月						
11	DW001	废水总排口	F ⁻	1次/4小时						
12	DW001	废水总排口	水温	1 次/月						
13	DW001	废水总排口	流量	1 次/月						

2、废水监测点位示意图

我分公司废水监测点位平面布置图如下:

山西兰花科技创业股份有限公司化工分公司废水监测点位示意图

3、废水监测方法及使用仪器

废水污染物分析方法及使用仪器情况见表 3-4。

表 3-4 废水污染物分析方法及使用仪器一览表

序 号	分析项 目	采样方法及依据	样品 保存 方法	分析方法及依据	检出限	仪器设备名 称和型号	备注
1	COD	НЈ-864. 1-2017		重铬酸钾法 GB/T11914-1989	5mg/L	酸式滴定管	
2	氨氮	НЈ-864. 1-2017		纳氏试剂分光光度法 HJ 535-2009	0.025 mg/L	分光光度计	
3	РН	НЈ-864. 1-2017		玻璃电极法 GB9724-2007		酸度计	
4	流量	НЈ-864. 1-2017		CJ/T3008. 3-1993 巴氏槽		巴氏槽	
5	悬浮物	НЈ-864. 1-2017		重量法 GB/T 11901-1989	4 mg/L	天平、烘箱	
6	氰化物	НЈ-864. 1-2017		分光光度法 HJ 484-2009	0.004 mg/L	分光光度计	
7	挥发酚	НЈ-864. 1-2017		分光光度法 HJ 503-2009	0.0003 mg/L	分光光度计	
8	硫化物	НЈ-864. 1-2017		亚甲基蓝分光光度法 GB/T16489-1996	0.005 mg/L	分光光度计	
9	石油类	НЈ-864. 1-2017		红外分光光度法 HJ 637-2012	0.04 mg/L	红外分光光 度计	
10	总磷	НЈ-864. 1-2017		钼酸铵分光光度法 GB 11893-1989	0.01 mg/L	分光光度计	
11	总氮	НЈ-864. 1-2017		紫外分光光度法 HJ 636-2012	0.05 mg/L	紫外分光光 度计	
12	水温	НЈ-864. 1-2017		温度计法		温度计	
13	氟化物	НЈ-864. 1-2017		离子选择电极法 GB7484-1987	0.05 mg/L	WL-15B 微处 理机离子计	

(三)厂界噪声监测

1、厂界噪声监测内容

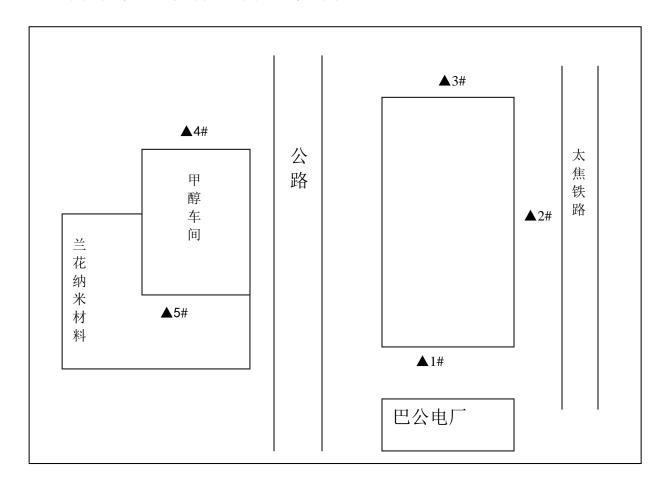

厂界噪声监测内容见表 3-5。

表 3-5 厂界噪声监测内容一览表

点位布设	监测项目	监测频次	监测方法及 依据	仪器设备名称 和型号	排放限值
厂区东、 西、南、北 共计5点	Leq	1次/季度	《工业企业厂界环 境噪声排放标准》 GB12348-2008 中 3 类标准	多功能声级计 AWA6288+	昼间: ≤65dB(A) 夜间: ≤55dB(A)

2、监测点位示意图

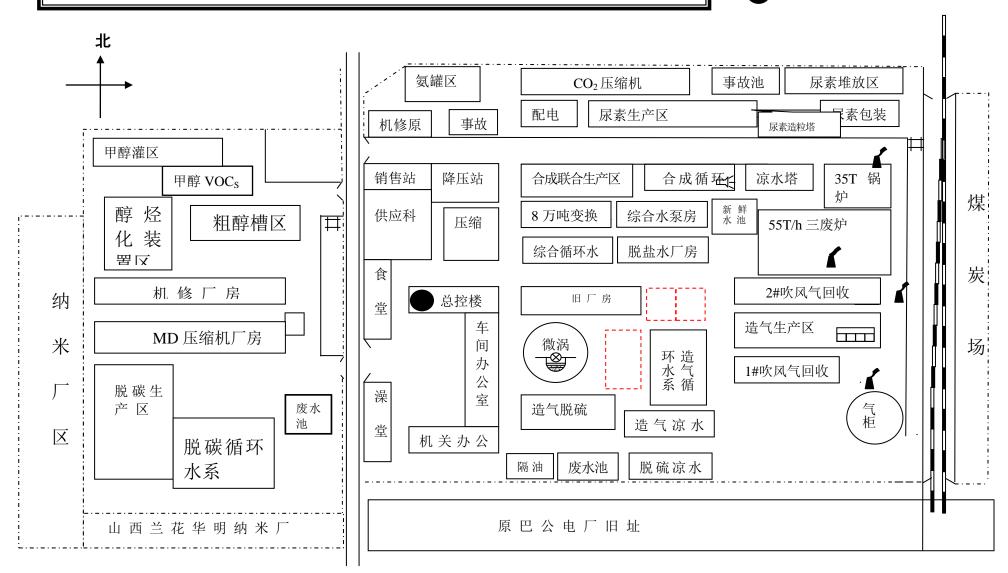
沿厂界设14个噪声监测点,见下图。

(四)排污单位周边环境质量监测

1、监测内容

周边环境质量监测:按照环境影响报告书及其批复要求,我分公司应根据要求监测周边的环境空气、地表水、地下水、土壤。监测点位、项目、频次见表 3-6。

表 3-6 排污单位周边环境质量监测内容一览表


监测类别	监测点位	监测项目	监测频次	
		PM10		
		PM2. 5		
环境空气	厂区	S0 ₂	1次/小时	
小児至 T		03	1 火/八帆	
		NO_2		
		CO		
		PH值		
	巴公河	COD		
		BOD_5		
地表水		氨氮	1次/年	
		石油类		
		硫化物		
		氰化物		
		PH值		
地下水	2#深井	COD	1次/年	
		氰化物		

监测类别	监测点位	监测项目	监测频次
		挥发酚	
		氨氮	
		氟化物	
		NO ₃ —N	
	2#深井	总硬度	
		NO ₂ —N	
		硫酸盐	
		氯化物	
地下水		六价铬	1 次 / 年
地下水		汞	1 次/年
		砷	
		锌	
		镍	
		镉	
		铅	
		锰	
		铁	
		溶解性总固体	
土壤	厂区	镉、铅、铬、铜、锌、 镍、汞、砷等	1 次/年

2、监测点位示意图

山西兰花科技创业股份有限公司化工分公司环境空气质量监测点位示意图

环境空气质量监测点

3、监测方法及使用仪器

监测方法及使用仪器情况见表 3-7

表 3-7 排污单位周边环境质量监测监测方法及使用仪器一览表

序号	监测 类别	监测 项目	采样方法及依据	样品保 存方法	分析方法及 依据	监测仪器名 称和型号	备注
		PM10					
		PM2.5					
1	环境	SO ₂	《环境空气质量标		HJ/T193 环境 空气质量自	XHAQMS3000 型空气质量 连续监测系 统	
	空气	03	准》(GB3095-2012)		动自动监测 技术规范		
		NO_2					
		CO					
2	地表水	PH 值、COD、氨 氮、总磷、总 氮等	《地表水环境质量标准》(GB3838-2002)		《地表水环 境质量标准》 (GB3838-20 02)		
3	地下水	PH 值、总硬度、 硫酸盐、COD、 氨氮等	《地下水质量标准》 (GB/T14848-2017)		《地下水质 量标准》 (GB/T14848 -2017)		
4	环境	昼间噪声	声 《工业企业厂界环境 噪声排放标准》		《工业企业 厂界环境噪 声排放标准》	多功能声级计	
7	噪声	夜间噪声	(GB12348-2008)		(GB12348-2 008)	AWA6288+	
5	土壤	镉、铅、铬、 铜、锌、镍、 汞、砷等	《场地环境监测技术 导则》(HJ 25.2-201 4)		《场地环境 监测技术导 则》(HJ 25. 2-2014)		

(五)手工监测质量保证

1、机构和人员要求:

企业自测机构必须具有 4 名以上持有省级环境保护行政主管部门经过考核颁发的环境监测上岗证的人员,自测机构必须通过省级环境保护行政主管部门的监测资格认定。

委托有资质第三方监测机构进行监测,并出具监测报告。

2、监测分析方法、项目及频次要求:

首先采用国家标准方法,在没有国标方法时,可采用行业标准方法或国家环保部推荐方法(尽可能与监督性监测方法一致)。

按照《排污许可证管理办法》规定的项目、频次进行监测。

3、仪器要求:

所有监测仪器、量具均经过质检部门检定合格并在有效期内使 用。

4、环境空气、废气监测要求:

按照《环境空气质量手工监测技术规范》(HJ194-2017)、《固定源废气监测技术规范》(HJ/T397-2007)、《固定污染源监测质量保证与质量控制技术规范》(HJ/T373-2007)和《大气污染物无组织排放监测技术导则》(HJ/T55-2000)等相关标准及规范的要求进行,按规范要求每次监测增加空白样、平行样、加标回收或质控样等质控措施。

5、水质监测分析要求:

水样的采集、运输、保存、实验室分析和数据处理按照《地表水和污水监测技术规范》(HJ/T91-2002)、《地下水环境监测技术规

范》(HJ/T164—2004)和《固定污染源监测质量保证与质量控制技术规范》(HJ/T373-2007)等相关标准及规范的要求进行,按规范要求每次监测增加空白样、平行样、加标回收或质控样等质控措施。

6、噪声监测要求:

布点、测量、气象条件按照《工业企业厂界环境噪声排放标准》 (GB12348-2008)中的要求进行,多功能声级计 AWA6288+在测量前、 后必须在测量现场进行声学校准。

7、记录报告要求:

现场监测和实验室分析原始记录应详细、准确、不得随意涂改。监测数据和报告经"三校""三审",并按时上报监测数据情况。

四、自动监测方案

(一)自动监测内容

- 1、废气自动监测项目主要包括: 55T/h 三废炉、35T/h 锅炉烟 气流速、颗粒物、二氧化硫、氮氧化物等。
- 2、总排废水自动监测项目主要包括:流量、PH 值、氨氮、化学需氧量、F⁻等。
- 3、其他自动监测项目:煤场扬尘、厂区空气质量监测。自动监测内容见表 4-1。

表 4-1 自动监测内容一览表

序号	自动监测类别	排放口编 号	监测项目	安装位置	监测频 次	联网情况	是否验收
			流速			已联网	是
1	废气	DA 018	二氧化硫	55T/h 三废炉	全天连	已联网	是
	及气	DAUIS	氮氧化物	烟囱	续监测	已联网	是
		颗粒物			已联网	是	
	2 废气		流速		全天连续监测	已联网	是
2		DA019	二氧化硫	35T/h 锅炉烟		已联网	是
2	<i>1</i> & t		氮氧化物	囱		已联网	是
			颗粒物			已联网	是
			流量	废水总排口		已联网	是
			化学需氧 量	废水总排口		已联网	是
3	废水	DW001	PH 值	废水总排口	全天连 续监测	已联网	是
			氨氮	废水总排口		已联网	是
			F^-	废水总排口		已联网	是

(二)自动监测质量保证

1、运维要求

我分公司委托中绿环保科技股份有限公司负责废水、废气在线 监测设备的运行和维护。

2、废气污染物自动监测要求:

按照《固定污染源烟气(SO₂、NO_x、颗粒物)排放连续监测技 术规范》(HJ75-2017)和《固定污染源烟气(SO2、NOx、颗粒物) 排放连续监测系统技术要求及检测方法》(HJ76-2017)对自动监测 设备进行校准与维护。

3、废水污染物自动监测要求:

按照《水污染源在线监测系统运行与考核技术规范(试行)》 (HJ)和《水污染源在线监测系统数据有效性判别技术规范》 (HJ/T356-2007)对自动监测设备进行各类比对、校验和维护。

4、记录要求:

自动监测设备运维记录、各类原始记录内容应完整并有相关人 员签字,保存三年。

五、执行标准

我分公司严格执行各类废气、废水、噪声等相关标准,各类污 染物排放执行标准见表 5-1。

各类污染物排放执行标准 表 5-1 2=34.

源类型	132	污染源 名称	排放口 编号	标准名称	监测项 目	标准限值	确定依据
固定源废	1	尿素放 空管	DA 015	《恶臭污染物综合排放标准》(GB14554-93)表2	氨	35kg/h	
		筛分机 排气筒	DA 016	《大气污染物综合排放标 准》(GB16297-1996)表2	颗粒物	$120 \mathrm{mg/m}^3$	排污许可证
气	3	, , , , , ,		《恶臭污染物综合排放标	氨	75kg/h	411.43.71.47.22
	4	造粒塔	DA017	准》(GB14554-93)表 2	臭气浓 度	60000 无量 纲	

	5			《大气污染物综合排放标 准》(GB16297-1996)表2	颗粒物	120mg/m ³							
污染 源类 型	序 号	污染源 名称	排放口编号	标准名称	监测项 目	标准限值	确定依据						
	6				颗粒物	30 mg/m ³							
	7				二氧化 硫	200 mg/m^3							
	8	55T 三 废炉排		《锅炉大气污染物排放标 准》(GB13271-2014)表3	氮氧化 物	200 mg/m^3							
	9		DA 018	中燃煤锅炉特别排放限值	林格曼 黑度	≤1级	排污许可证						
	10	放口			汞及其 化合物	0.05mg/m ³	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
	11									《大气污染物综合排放标 准》(GB16297-1996)表2	非甲烷 总烃	120mg/m ³	
	12			《恶臭污染物综合排放标准》(GB14554-93)表2		40000 无量 纲							
固定	13				颗粒物	30 mg/m^3							
源废气	14				二氧化硫	200 mg/m ³							
	15			《锅炉大气污染物排放标准》(GB13271-2014)表3 中燃煤锅炉特别排放限值	氮氧化 物	200 mg/m ³							
	16	35T 锅 炉排放 口	DA 019		林格曼 黑度	≤1级	排污许可证						
	17	р			汞及其 化合物	0.05mg/m ³							
	18			《大气污染物综合排放标 准》(GB16297-1996)表2	非甲烷 总烃	120mg/m ³							
	19			《恶臭污染物综合排放标准》(GB14554-93)表2	臭气浓 度	40000 无量 纲							
	20	甲醇 VOCs治 理	DA 022	石油化学工业污染物排放 标准(GB 31571-2015)	甲醇	50mg/m ³	排污许可证						

污染 源类 型	序 号	污染源 名称	排放口 编号	标准名称	监测项目	标准限值	确定依据
	1				非甲烷 总烃	4.0 mg/m ³	
	2				臭气浓 度	20 无量纲	
	3				硫化氢	0.06 mg/m ³	
无组	4	厂界废		《大气污染物综合排放标	氨	1.5 mg/m ³	
织	5	气		准》(GB16297-1996)表2	甲醇	12 mg/m^3	
	6				酚类	0.080mg/m ³	
	7				苯并芘	0.008ug/m ³	
	8				颗粒物	1. 0mg/m ³	
	1		DW001		氨氮	25 mg/L	
	2		DW001		COD	80 mg/L	
	3		DW001		硫化物	0.5 mg/L	
	4		DW001		石油类	3mg/L	
废水	5	总排废	DW001	《合成氨工业水污染物排 放标准》(GB13458-2013)	挥发酚	0.1 mg/L	《合成氨工业水污染物排放标准》
<i>版</i>	6	水	DW001	表3中水污染物间接排放最 高允许排放限值	氰化物	0.2 mg/L	何日3458-2013)
	7		DW001		悬浮物	50 mg/L	
	8		DW001		总磷	0.5 mg/L	
	9		DW001		РН	6-9	
	10		DW001		总氮	35 mg/L	

污染 源类 型	序 号	污染源 名称	排放口 编号	标准名称	监测项目	标准限值	确定依据
厂界噪声	1	厂界噪声		《工业企业厂界环境噪声 排放标准》(GB12348-2008)	昼间	65dB (A)	《工业企业厂界环境 噪声排放标准》 (GB12348-2008)表
** ** ** ** ** ** ** ** ** ** ** ** **	2	٦		表1中Ⅲ类标准	夜间	55dB (A)	1中Ⅲ类标准
	1			PM2. 5	年均≤35 μg/m³		
	2			《环境空气质量标准》 (GB3095-2012)	PM10	年均≤70 μg/m³	
环境空气	3				SO ₂	年均≤60 μg/m³	
	4	环境空 气			03	日最大 8 小 时平均 ≤ 160 µ g/m³	《环境空气质量标准》(GB3095-2012)
	5				NO ₂	年均 ≤ 40 µ g/m³	
	6				CO	年均≤ 4mg/m³	
	1				PH值	6-9	
	2				COD	≤ 40	
	3				B0D5	≤10	
地表水	4	巴公河		《地表水环境质量标准》 (GB3838-2002)	氨氮	≤ 2	《地表水环境质量标 准》(GB3838-2002) IV 类标准
	5			_	石油类	≤ 1.0	
	6				硫化物	≤ 1.0	
	7				氰化物	≤ 0. 2	

污染 源类 型	序号	污染源 名称	排放口 编号	标准名称	监测项 目	标准限值	确定依据
地水下	1	深井		《地下水质量标准》 (GB/T14848-2017)	РН	6.5-8.5	《地下水质量标准》 (GB/T14848-2017) III类标准
	2				氰化物	€ 0. 05	
	3				挥发酚	≤ 0. 002	
	4				氨氮	≤ 0. 02	
	5				氟化物	≤ 1.0	
	6				NO 3-N	≤ 20	
	7				总硬度	≤ 450	
	8				耗氧量	≤ 3. 0	
	9				NO2-N	≤ 0. 02	
	10				硫酸盐	≤ 250	
	11				氯化物	≤ 250	
	12				六价铬	≤ 0. 05	
	13				汞	≤ 0. 001	
	14				砷	≤ 0. 05	
	15				锌	≤ 1.0	
地水	16	深井		《地下水质量标准》 (GB/T14848-2017)	镍	≤ 1.0	《地下水质量标准》 (GB/T14848-2017) Ⅲ类标准
	17				镉	≤ 0. 01	
	18				铅	≤ 0. 05	
	19				锰	≤ 0. 01	
	20				铁	≤ 0. 3	
	21				溶解性 总固体	1000	
土壤	22	厂区		《场地环境监测技术导则》 (HJ 25.2-2014)	镉、铅、 铬、铜、 锌、镍、 汞、砷等		《场地环境监测技术 导则》(HJ 25.2-2014)

六、委托监测

由于仪器、设备等各方面因素,我分公司有部分项目不具备监测条件,如废水中的氰化物、挥发酚、石油类、硫化物、总磷、总氮、悬浮物等项目委托山西高创环保检测有限公司手工监测。

委托监测协议应与自行监测方案一同报晋城市生态环境局备案。委托监测协议、检测机构资质等证明材料附后。

七、信息记录和报告

(一)信息记录

1、手工监测的记录

(1) 采用记录:

主要包括采样日期、采样时间、采样点位、混合取样的样品数量、采样器名称、采样人姓名等。

(2) 样品保存和交接:

主要包括样品保存方式、样品传输交接记录。

(3) 样品分析记录:

主要包括分析日期、样品处理方式、分析方法、质控措施、分析结果、分析人姓名等。

(4) 质控记录:

主要包括废水、废气、噪声委托监测报告、污水化验报告单等。

2、自动监测运维记录

包括自动监测系统运行状况、系统辅助设备运行状况、系统校准、校验工作等;仪器说明书及相关标准规范中规定的其他检查项目;校准、维护保养、维修记录等。

3、生产和污染治理设施运行状况

记录监测期间企业各主要生产设施运行状况(包括停车、开车情况)、产品产量、主要原辅材料使用量、取水量、主要燃料消耗量、燃料主要成分、污染治理设施主要运行状态参数、污染治理主要药剂消耗情况等。日常生产中上述信息也需整理成台账保存备查。

4、固体废物(危险废物)产生与处理状况

记录监测期间各类固体废物和危险废物的产生量、综合利用量、处置量、贮存量、倾倒丢弃量,危险废物还应详细记录其具体去向。

(二)信息报告

每年一月底前编写自行监测年度报告,年度报告至少应包含以下内容:

- 1、监测方案的调整变化情况及变更原因;
- 2、企业全年运行天数,各监测点、各监测指标全年监测次数、超标情况、浓度分布情况;
 - 3、按要求开展的周边环境质量影响状况监测结果;
 - 4、自行监测开展的其他情况说明;
 - 5、排污单位实现达标排放所采取的主要措施。

八、自行监测信息公布

(一)公布方式

1、分公司应按要求及时向晋城市生态环境局监测站上报自行监测信息,并在省生态环境厅和市生态环境局网站向社会公布自行

监测信息。

 分公司通过兰花集团总公司对外网站统一公布自行监测信息, 便于公众知晓。

(二)公布内容

- 1、基础信息:企业名称、法人代表、所属行业、地理位置、生产 周期、联系方式、委托监测机构名称等;
 - 2、企业自行监测方案;
- 3、自行监测结果:全部监测点位、监测时间、污染物种类及浓度、标准限值、达标情况、超标倍数、污染物排放方式及排放去向;
 - 4、未开展自行监测的原因;
 - 5、自行监测年度报告。

(三)公布时限

- 企业基础信息应随监测数据一并公布,基础信息、自行监测方案如有调整变化时,应于变更后的五日内公布最新内容;
 - 2、手工监测数据应于每次监测完成后的次日公布;
- 3、自动监测数据应实时公布监测结果,其中废气自动监测设备为每1小时均值;
 - 4、每年一月底前公布上年度自行监测年度报告。